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Summary: Once plastics objects are registered in museum collections, the institution 

becomes responsible for their long term   preservation, until the end of their useful 

lifetime. Plastics appear to deteriorate faster than other materials in museum collections 

and have a useful lifetime between 5 and 25 years. Preventive or inhibitive conservation 

involves controlling the environments in which objects are placed during storage and 

display, with the aim of slowing the major deterioration reactions. Once in progress, 

degradation of plastics cannot be stopped or reversed, so the aim of preventive 

conservation is to ‘buy time’ for the object. Inhibitive  conservation of plastics involves 

the removal or reduction of factors causing or accelerating degradation including light, 

oxygen, acids, relative humidity and acidic breakdown products. Specific approaches to 

conservation have been developed for cellulose nitrate, cellulose acetate, PVC and 

polyurethanes by considering the most effective action to inhibit their major degradation 

pathways. The purpose of this article is to outline the main factors causing degradation 

of the least stable plastics in museum collections and present an overview of the 

conservation treatments established to date. Recent research has suggested that some of 

the conservation practices to slow the rate of deterioration in use today, particularly 

those for cellulose nitrate and acetate, are poorly effective and that alternatives should  

be evaluated. One alternative is low temperature storage.   
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Introduction 

Today, most international museums and galleries possess collections which contain plastics.  

Plastics may be identified within building materials, defence equipment, ethnography, furniture, 

housewares,  information technology, medical and sports equipment, modern art, photography and 

toys. Many incorporate metals, textiles and wood with plastics in their construction. While 

museums continue their policy to acquire objects which reflect both everyday life, technological 

and historical events, the proportion of plastics in museums will increase. 

 

In general, deterioration of plastics objects in museums is visible within 5-25 years of collection. 

Surveys of 3-dimensional objects containing plastics conducted in the United Kingdom and 

Scandinavia have shown that 1% of objects are actively deteriorating and are in immediate need of 



conservation, while 12% exhibit deterioration and require cleaning, stabilizing and repair. 
[1,2]

 All 

the ‘acute’ objects contain cellulose nitrate, cellulose acetate, plasticized PVC or polyurethane 

foam. Most objects (60%) have been defined as low conservation priority; they are in stable 

condition but need some treatment such as cleaning.  Only just over one quarter require no 

conservation treatment. Deterioration of plastics objects in museums has only been recognised as an 

important area worthy of research since 1991. 
[3] 

As a result, little is known about the conservation 

of plastics compared to other materials found in museums.  To date, few conservation practices 

have been established, and the rate of development of new treatments cannot keep pace with 

degradation. Once deterioration has started, it cannot be stopped or reversed only slowed.  

 

Conservators consider two approaches to conservation when planning treatment for degraded 

materials; active also known as interventive, and inhibitive also known as passive. Active 

conservation treatments are those involving practical treatments applied as necessary to individual 

objects to limit further deterioration.  They include cleaning surfaces, adhering broken sections and 

filling missing areas to strengthen damaged objects.  Established active conservation practices for 

plastics are few. The major cause is the sensitivity of many plastics to organic liquids, aqueous 

solutions and water itself, particularly if the polymer has deteriorated.  Any coating or  adhesive 

which adheres successfully to a plastic surface, must either soften, melt or otherwise damage the 

substrate. Such treatments change the appearance of the original, which does not comply with the 

ethical practice of reversibility, as summarized in the code of practice: 
[4]

 

 

‘The conservation professional must strive to select methods and materials that, to the best of 

current knowledge, do not adversely affect cultural property or its future examination, scientific 

investigation, treatment or function.’ 

 

Since active conservation of plastics is poorly developed it will not be discussed further here.  

Inhibitive conservation involves controlling the environments in which objects are placed during 

storage and display, with the aim of slowing deterioration reactions.  Inhibitive conservation of 

plastics involves the removal or reduction of those factors either causing or accelerating degradation 

including light, oxygen, water and acidic breakdown products. Specific inhibitive approaches to 

conservation have been used successfully to prolong the useful lifetimes of collections containing 

cellulose nitrate, cellulose acetate, plasticized PVC and polyether-based polyurethanes; these will 



be discussed in the article. Because museum collections are usually grouped according to historical 

periods and not by material type, one store is likely to contain objects comprising many different 

materials. A storage climate suitable for, say, metals is unlikely to be equally suitable for plastics. 

Microclimates specific to plastic type are currently achieved by introducing adsorbents or 

scavengers which adjust the composition of the surrounding air, into the relevant storage areas.  

 

Cellulose nitrate (CN) and cellulose acetate (CA) 

Cellulose plastics, particularly cellulose nitrate (CN)  and acetates were commercially developed at 

the start of the 20
th

 century and were used to produce photographic films, textile fibres, fake ivory, 

tortoiseshell and amber.  They were synthesized by esterification of paper or rags with acids thereby 

replacing some of cellulose’s hydroxyl groups with other substituents,  namely nitrate or acetyl 

groups.  The resulting polymer underwent unacceptable shrinkage on moulding and plasticizers or 

softeners were necessary to minimise such effects.  Due to their instability and short useful lifetime, 

semi-synthetic cellulosics have been largely replaced by modern synthetics.  Fresh cellulose nitrate  

is highly flammable and burns at a temperature up to 15 times higher than that achieved by burning 

paper; this was the major reason for its replacement. 

 

Degradation  of cellulose nitrate 

Cellulose nitrate undergoes hydrolytic, thermal and photochemical reactions.  In addition, 

breakdown  of the polymer is autocatalytic; if not removed from the undegraded material, the 

products of breakdown catalyse a faster and more extensive reaction than the primary processes.   

The major  product of thermal deterioration is the highly reactive, oxidising agent nitrous oxide 

(NO2), identified by its yellow vapour and distinctive odour.  This is formed by cleavage of the N-O 

bonds joining the cellulose ring  which are the weakest bonds in the molecule.  Nitrous oxide reacts 

with moisture in air to form nitric acid, which in turn attacks organic materials and corrodes metals 

on contact. Chain scission along the backbone between the cellulose rings follows, resulting in a 

considerable reduction in molecular weight. CN is particularly susceptible to light of wavelengths 

between 360nm-400nm.  Degradation is due to a nitrate ester cleavage in a similar manner to 

thermal decomposition. At shorter wavelengths, that is those with higher energy, disintegration of 

the cellulose ring occurs, causing a rapid decrease in molecular weight.  Once started this process 

continues even in the absence of light.  

An examination of cellulose nitrate adhesive taken from repairs in cuneiform (dried clay) writing 



tablets from the British Museum, where the date of the repair was known, suggests that the 

degradation of CN is retarded substantially by the plasticizer added during manufacture and that 

such adhesives are stable for at least 30 years. 
[5]  

The relationship between loss of plasticizer and 

reduced stability of cellulose nitrate is also demonstrated by three-dimensional materials. 

Degradation can be divided into three stages. The first stage involves the evaporation or migration 

of plasticizer manifested by shrinkage of the object.  As degradation continues, internal cracks or 

crizzling develop as shown in Figure 1 and cellulose nitrate yellows.  In the final stage, crizzling is 

so extensive that cellulose nitrate disintegrates. At this point, its flammability is much less than 

fresh cellulose nitrate. And is similar to that of paper.   

          
 

 
 

Figure 1. Poster from Museum of Historical Music in Copenhagen, Denmark made from cellulose 

nitrate in the 1960s shows shrinkage and tackiness due to loss of plasticizer and crizzling of the 

polymer.      

 

Conservation of cellulose nitrate  

Activated charcoal  is widely used to reduce the rate of degradation of cellulose nitrate objects and 

has proven effective for ethnographic materials including mock tortoiseshell boxes, hair combs and 

shadow puppets. 
[6]

 Wood, vegetables and coconut shells are destructively distilled to produce a 

fine, black powder which contains millions of microscopic pores, giving the resulting activated 

carbon a huge surface area density of 300-2000m
2
 per gram.  Activated charcoal can also be 

obtained in the form of woven textiles, impregnated card or paper and pellets of various size.  

Pellets and powder are likely to adhere to tacky and uneven surfaces, so should not be allowed to 

come into contact with deteriorating CN.  Although one of the most widely used adsorbents for 

industrial, domestic and medical applications, activated charcoal is more effective at adsorbing 

aromatic or benzenoid materials than aliphatic fatty acids and alcohols, trapping them in the pores 

primarily via weak London dispersion forces.   

Activated charcoal cloth or charcoal-impregnated paper used as packing materials for cellulose 

nitrate objects readily adsorbs nitrogen oxide degradation products, rendering them unable to 



participate in autocatalytic breakdown of CN or to come into contact with metals in the vicinity. 

Because of the wide range of pollutants adsorbed by activated charcoal, water molecules from air 

may compete with nitrogen oxides for sites as shown in Figure 2. When all the pores of the active 

charcoal are filled, no further adsorption is possible; active charcoal packing materials should be 

renewed every three years. Activated charcoal  can be regenerated by heating to 650ºC in an inert 

atmosphere, allowing adsorbed material to be desorbed. 

 

                          
 

Figure 2. Water molecules and pollutants from air compete with nitrous oxide to be adsorbed by 

activated charcoal (black rectangle to right of picture).  Such competition reduces the effectiveness 

of activated charcoal in removing nitrous oxide from the vicinity of CN objects, including spectacle 

frames from the 1930s. If nitrous oxides are allowed to remain in contact with CN, autocatalysis 

leads to their rapid deterioration. 

 

However, activated charcoal may not be the most effective molecular trap for nitrogen oxides. 

Measurements using Drager tube gas detectors to determine the amount of nitrogen oxides adsorbed 

by seven molecular traps, suggested that zeolites (hydrated  silicates of calcium and aluminium) 

were just as effective as activated charcoal at adsorbing nitrogen oxides. Zeolites and activated 

charcoal adsorbed a concentration 250 times higher than calcium carbonate which may acts as an 

alkaline buffer to neutralise the acid gases formed during deterioration of CN. 
[7]

  In medical 

applications, doping zeolites with positively charged ions pulls nitrogen oxides into their pores in 

preference to water or other gaseous pollutants. 
[8]

  Such specificity in a molecular trap would 

prolong its lifetime so that replacement would be necessary less often than is the case with activated 

charcoal.  



 

Deterioration of cellulose acetate 

The major degradation reaction of cellulose triacetate is similar to that of cellulose nitrate, the 

primary reaction being deacetylation also known as hydrolysis, during which hydroxyl groups 

replace acetyl groups (COCH3) on the cellulose ring.  Deacetylation is accelerated by water (usually 

in the form of moisture in air), acid or base.   Because the loss of acetyl groups from cellulose 

acetate   results in the formation of acetic acid (CH3COOH) which gives a distinct vinegary odour 

to degrading materials, the process is also known as the ‘vinegar syndrome’.   

Cellulose acetate undergoes autocatalytic breakdown if acetic acid is allowed to remain in contact 

with the degrading polymer. This happens easily because the solubility of acetic acid in cellulose 

acetate is high, similar to the solubility of acetic acid in water in atmospheric moisture. The 

degradation product also attacks organic materials and metals in the vicinity as shown in Figure 3. 

Degradation does not follow a linear rate, but   is slow during the initial, induction period and more 

rapid after the onset of autocatalysis.  As deacetylation progresses, chain scission takes place with 

bonds breaking between the cellulose units, dramatically reducing the molecular weight, tensile 

strength and solubility of the polymer.   

In addition to degradation of the cellulose acetate polymer, migration and subsequent evaporation of 

plasticizer from between the cellulose acetate chains give rise to shrinkage, tackiness and increased 

brittleness. The degradation of some plasticizers has been shown to increase acidity of  cellulose 

acetate-containing materials.  Triphenyl phosphate, used as a plasticizer for cellulose acetate since 

the 1940s, decomposes to form diphenyl phosphate and phenol.  Diphenyl phosphate is a strong 

acid so is likely to accelerate the deacetylation of  cellulose acetate. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 3. Acetic acid produced by degrading knife handles from the 1950s, has ‘burned’  the paper 

in which they have been wrapped during storage. The knife blades have also undergone corrosion 

on contact with acetic acid.  
 

Conservation of cellulose acetate 

Zeolites were first shown in 1994 to inhibit the rate of deterioration of cellulose acetate 

photographic negative film. 
[9]

   The technique has since been adapted to inhibit the deterioration of 

three- dimensional materials containing cellulose acetate including handbags, jewellery and modern 

art. 
[10]

  Zeolites comprise a family of hydrated silicates of calcium and aluminium with  pores of 

pre-determined diameters which are introduced by removing water from the crystal lattices under 

intense heating.  They are thought to inhibit the degradation of cellulose acetate by both trapping 

water vapour from the polymer, thereby minimising the rate of hydrolysis and by trapping acetic 

acid vapour which reduces the opportunity for more dominant, rapid autocatalysis to occur. 

However, when water and acetic acid are present together, they compete for sites in the zeolite 

lattice, reducing the effectiveness of adsorption of acetic acid by approximately one third. 
[11]

     

Traditionally, movie films in archives have been stored in metal cans or plastic containers to protect 

the films both from mechanical damage during handling and from fire.  Zeolites, usually molecular 

sieve Type 4A, are introduced to the container, themselves enclosed in polyethylene sachets.  In 

contrast, three-dimensional objects containing cellulose acetate are rarely enclosed in air 

impermeable containers but are either stored in cardboard boxes or on open shelves, so the dilemma 

arises of whether to ventilate them to disperse acetic acid, perhaps inadvertently in the direction of 

other objects, or to enclose them with zeolites.  While enclosures prevent contact between water 

vapour in air and cellulose acetate, they reduce visibility of objects to curators, students and 

conservators and objects.  Ventilation seems to be favoured for modern art containing cellulose 

acetate whereas ethnographic materials are more often enclosed with zeolites. 
[12,13]

      

 

Plasticized poly (vinyl chloride)  

Plasticized poly (vinyl chloride) (PVC) has been one of the most economically and technically 

important plastics materials since the 1950s.  Although its first application was as an effective 

replacement for rubber in electrical cable insulation during World War 2, world production today is 

higher than 20 million tonnes per year, making it the second most highly consumed plastics 



material.  As a result, examples are present in many international museum collections in the form of  

clothing and footwear, furniture, electrical  insulation, medical equipment, housewares, vinyl 

records, toys  and packaging materials used to store photographs and other objects.  Many 

plasticized PVC formulations are designed to function for less than 20 years; this is a short lifetime 

for a museum object.  

Compounding PVC involves adding sufficient quantities of modifiers to the raw polymer to 

produce a homogeneous mixture suitable for processing at the lowest price. Plasticizers are the 

major modifier for PVC formulations in terms of percentage weight (between 15% for vinyl 

flooring and 50%, for waterproof boots) and physical properties. A plasticizer is a material 

incorporated into a polymer or polymer mixture to increase its workability and its flexibility or 

elongation. Of the one million tonnes of plasticizers used annually in Europe, approximately 90% 

comprise phthalate esters. The largest single product used as a general purpose plasticizer 

worldwide since the 1950s is di (2-ethylhexyl) phthalate (DEHP).  

 

Deterioration of PVC 

Deterioration of plasticized PVC objects in museum collections is most frequently manifested by 

discolouration, tackiness at surfaces and, in some cases, the presence of crystalline material. First, 

plasticizer migrates from bulk to surfaces which results in increased tackiness. 
[14]

  At surfaces, 

DEHP either evaporates slowly or is hydrolysed to form crystalline phthalic acid. As esters, 

phthalate plasticizers are susceptible to hydrolysis when exposed to highly acidic or alkaline 

conditions; acidic conditions are provided by the gaseous product from thermal or photochemical 

degradation of the PVC polymer, namely hydrogen chloride. In addition, oxidation of DEHP results 

in the formation of phthalic acid. Such oxidative reactions are expected to occur above 200ºC, 

temperatures not usually experienced by materials in museum collections, but acidic conditions 

lower the necessary temperature.  
[15]

   

It is usually assumed that dehydrochlorination starts at imperfections in the PVC structure and starts 

with the breaking of a C-Cl bond as shown in Figure 4.  Loss of a chlorine atom is followed almost 

immediately by abstraction of a hydrogen atom and a shift of electrons in the polymer to form a 

double bond.  The next chlorine becomes allylic, highly reactive and is readily removed.  This leads 

to the progressive ‘unzipping’ of neighbouring clorine and hydrogen atoms to form a conjugated 

polyene system (alternate single and double carbon bonds), accompanied by the formation of 

hydrogen chloride.  As the conjugated polyene system develops, the polymer begins to absorb 



radiation in the ultraviolet part of the spectrum. After between 7 and 11 repeat polyene units have 

formed, absorption shifts to longer wavelengths until it is absorbing in the violet, blue and green 

parts of the spectrum.  Each absorption maximum has been found to correspond to a specific 

polyene length.  The rate of degradation can be followed using colour changes from white to yellow 

to orange to red, brown and, ultimately black.  Dehydrochlorination is an autocatalytic reaction, that 

is, if the hydrogen chloride produced is not removed from the environment surrounding PVC, 

dehydrochlorination continues at an accelerated rate.  
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Figure 4. Dehydrochlorination reaction of PVC results in the formation of polyenes and hydrogen 

chloride   

                                

Conservation of plasticized PVC 

The rate and extent of deterioration of plasticized PVC and the migration of DEHP are related.  In 

addition to functioning as a plasticizer, DEHP has a second role as anti-ageing additive for PVC. 

When DEHP either migrates to surfaces and evaporates or is adsorbed by another material, PVC 

materials discolour, become tacky to the touch and brittle.  Materials with lower levels of plasticizer 

degrade more rapidly than those containing more.   

The goal of conservation techniques for plasticized PVC is to prevent loss of plasticizer, thereby 

protecting the PVC polymer from dehydrochlorination. Enclosing objects in an impermeable 

material such as a glass tank or jar or a heat-sealed polyester bag is effective. In contrast, low 



density polyethylene readily absorbs oily materials, including plasticizers as illustrated by the 

polyethylene fishing box used to store highly plasticized PVC lures for 20 years shown in Figure 5. 

With time, DEHP has diffused from the lures into the polyethylene, softening the box so that it has 

deformed to the shape of the lures and today resembles plastic fossils. Traditionally, polyethylene 

bags have been used to store many types of objects; they are clearly unsuitable for the long term 

storage of PVC. 

Calculations  based on the weight lost by model sheets during accelerated thermal ageing, and the 

rule of thumb concerning the rate of reactions with temperature,  indicate that the useful lifetime of 

plasticized PVC objects  may be  prolonged more than 10 fold at ambient conditions, by changing 

the storage environment from a polyethylene bag to a closed glass container. Enclosing plasticized 

PVC objects, whatever their level of deterioration, is inexpensive to implement, of low practical 

complexity and still allows public accessibility. Conservators and designers are usually advised 

either to improve ventilation or to include adsorbent materials to remove volatile degradation 

products from the air space surrounding plastics objects during storage. In the case of plasticized 

PVC, such action  would accelerate the loss of plasticizer and thereby reduce the longevity of both 

new and deteriorated PVC objects.  

 

 
               

Figure 5. A polyethylene fishing box has absorbed plasticizer from plasticized PVC lures and 

formed polyethylene ’fossils’ over 20 years   

 

Polyurethane foam 

Polyurethane polymers are products of a polyol,  based either on a polyester or polyether, with 

several alcohol groups (-O-H), a di-or poly-isocyanate with several cyanate groups (-N=C=O) and a 

chain extender.  The chain extender reacts with the polyol’s alcohol  groups, initiating an imbalance 

in negative and positive charges throughout the molecule which, after reaction with the isocyanate,  

results in the formation of a urethane group (-NHCOO-) as shown in Figure 6. 
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Figure 6. Preparation of polyurethane polymers 

 

To produce polyurethane (PU) foam, water is added to the polyol and isocyanate starting materials. 

The water molecules react with  the cyanate groups to form amine groups (-NH2) and carbon 

dioxide gas. The amine continues to react with isocyanate groups to form urea linkages  

(-HNCONH-)  between the chains, instead of the urethane groups created in the absence of water. 

As  polymerization  progresses and molecular weight increases, carbon dioxide gas becomes 

trapped in the increasingly viscous liquid polymer.  The trapped bubbles form cells in the 

polyurethane foam.   

The physical properties of the final polyurethane are determined by those of the raw materials.  The 

physical form in which polyurethanes are produced, whether as fibres or expanded foams, depend 

on the chemical formulae of both the isocyanate and the alcohol or components; these control the 

molecular weights and extent of cross-linking in the resultant polymer. Polyglycols, such as a 

polyethylene glycol with a molecular weight of around 2000, result in a higher molecular weight 

polyurethane than if a  diol was used.  Polyurethanes are noted for their resistance to most organic 

solvents and high tensile strength.  As a result, they have found use as foams in upholstery where 

tensile strength is important and as modern art. 

 

Deterioration of PUR 

Polyurethanes ether (PURether) foams are thought to degrade primarily by oxidation, resulting in 



discolouration and a loss of mechanical properties. Since oxygen comprises 21% of air, it is 

difficult to prevent its contact with objects. Polyurethane foams degrade more rapidly than films or 

fibres since their many cells offer a greater surface area to volume ratio over which oxygen can 

have contact with the polymer.  In addition, the processing of foams may involve blowing air 

through polyurethanes in liquid form, providing conditions favourable to oxidation processes. 

Exposure to moisture, heat and light leads to polyurethane ester’s (PURester) degradation by 

hydrolysis.  Degradation results in chain scission,  in which energy breaks polymer chain bonds to 

create a polymer with two or more shorter chains, manifested by crumbling of foams.  Such 

crumbling often starts at surface skins of foams and, when the surfaces crumble and fall way from 

the object, fresh, undegraded foam is exposed to light and moisture, perpetuating degradation to the 

point of complete failure.  

 

Conservation of PURether 

Since the degradation of PURether foams involves reaction with oxygen, removing oxygen limits 

the extent of the reaction.  Packing objects in a nitrogen atmosphere is the traditional method to 

achieve oxygen-free storage, but its long-term effectiveness is dependent on using a perfect barrier 

to prevent ingress of oxygen from the surrounding air. A more convenient option has been used 

since the 1990s. Ageless
®
 oxygen absorber is one of several similar commercial products designed 

to inhibit the oxidation of foods during transport, and was the first to be evaluated for its suitability 

for use with museum plastics. 
[16]  

It comprises gas-permeable plastic sachets containing finely-

divided iron which oxidizes to form iron oxides in the presence of oxygen and water, binding 

oxygen from the surrounding environment.  Moisture is provided by the presence of potassium 

chloride in the sachet and is also a by-product of the oxidation reaction.  Different grades of 

Ageless
®
 are available; Ageless

®
 Z is recommended for the preservation of materials with a water 

content of between 0 and 85%, including plastics. Ageless
®
 Z can be used as a low-cost, convenient 

alternative to flushing with nitrogen for long-term oxygen-free storage of polyurethane foams.  It is 

claimed that Ageless
®
 oxygen absorber reduces the oxygen concentration of an air-tight container 

down to 0.01% (100ppm) or less.   

Objects are placed in an oxygen-impermeable envelope, such as those prepared from Cryovac 

BDF-200 film (a transparent laminate of nylon and polyolefins) or Escal


, a ceramic-coated film 

into which Ageless
®

 sachets have been introduced. Enclosures are flushed with dry nitrogen to 

remove any oxygen before being heat sealed as shown in Figure 7 with a natural rubber gas mask; 



rubber is the material  which has most been studied in connection with this technique. When 

Ageless
®
 reacts with oxygen, it undergoes an exothermic reaction producing a small amount of 

heat. 
[17]   

In addition, as a by-product of this reaction, a small quantity of water is formed which 

causes the relative humidity to increase inside the enclosure.  The presence of water has little effect 

on the rate of degradation of polyurethanes.   

 

 

 
 

 

Figure 7. Rubber gas mask being enclosed with oxygen absorber (indicated by white arrow to left of 

picture).  The oxygen impermeable bag is flushed with nitrogen just prior to heat sealing closed 

(tube to nitrogen cylinder is clear to left of heat sealer). 

 

 

Ageless
®
 Eye is the oxygen indicator supplied with Ageless

®
; it is in the form of a pressed tablet 

which changes colour from pale pink (less than 0.1% oxygen) to dark blue (greater than 0.5% 

oxygen).  However, Ageless
®

 Eye tends to lose its sensitivity to oxygen after approximately six 

months, manifested by unreliable colour changes, so an oxygen monitoring device is more reliable. 

An alternative method to using sachets of oxygen absorber is to enclose polyurethanes in a 

multilayer polymer film which  incorporates the oxygen scavenger agents as one of the layers. Such 

films require exposure to ultraviolet radiation to initiate the scavenging reaction. 
[18]  

   

 

Conclusion 

Considerable progress has been made since the 1990s by applying adsorbents and storage 

techniques used in other disciplines to slow the degradation of plastics in museum collections.  

However, as experience in the field of plastics conservation grows and as technology of molecular 

traps develops, it is clear that the adsorbents widely in use today to adsorb acidic degradation 

products produced by cellulose nitrate and acetates are probably not the most effective available. 



Activated charcoal, used to adsorb nitrogen oxides from storage areas housing cellulose nitrate, is a 

poorly selective molecular  trap which also adsorbs many other types of pollutants and water 

vapour. As a result, active charcoal becomes rapidly exhausted and frequently requires replacing. A 

possible alternative is a zeolite doped with positively charged ions  which pulls nitrogen oxides into 

its pores in preference to water or other gaseous pollutants. The performance of zeolite, molecular 

sieve 4A  which is currently used to remove acetic acid from cellulose acetate, is reduced by one 

third if water is present since water and acetic acid molecules compete with each other to occupy 

sites.  Again, a more effective zeolite could be found.  

Traditional storage of plasticized PVC objects in Low Density polyethylene (LDPE) bags to prevent 

contact between their degraded, tacky surfaces and dust, finger grease or other objects, has recently 

been found to have a negative side-effect.  Polyethylene adsorbs phthalate plasticizers readily when 

it is in contact with PVC.  Because phthalate plasticizers have a dual role as anti-ageing additive, 

removal reduces the stability of the PVC polymer.  Closed glass or polyester containers should 

replace polyethylene for storing plasticized PVC.  

Oxygen-free microclimates for PURether foams are currently achieved by introducing oxygen 

absorbent in sachets into an enclosure containing the object and made of an oxygen impermeable 

material. This is effective at slowing the rate of deterioration, but cosmetically unsatisfactory, 

particularly for modern artworks.  One possibility for the future is to enclose foams in a multilayer 

polymer film which incorporates the oxygen scavenger as one layer.  

A low technology alternative to using adsorbents and barrier films to store plastics, is long term low 

temperature storage which has been recommended to prolong the useful lifetime of many museum 

materials and in short periods to control insect infestations (-20 to -30ºC). 
[19] 

Reducing the 

temperature by between 5 and 10ºC halves the rate of the most common chemical degradation 

reactions of plastics, such as hydrolysis and oxidation. The importance of controlling both 

temperature and relative humidity (RH) has been recognised for the long term storage of composite 

materials which contain plastics in thin layers, such as magnetic carriers, optical media and 

photographic materials (recommendations include –5ºC, 30-40%RH) for moving image colour film 

and +20ºC, 40%RH for optical media). 
[20] 

 At present, low temperature storage is only routinely 

applied to photographic archives and not to three  dimensional objects, so we have limited practical 

experience of its effects.  However the author has conducted a pilot study on the effect of cold 

storage on physical properties of selected plastics. 
[21] 

 Initial findings suggest that storage  of 

plastics in a domestic freezer should be considered as an alternative to the present preventive 



conservation techniques for long term storage. 
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