
Ascend Communications, Inc.

Beta Draft Confidential

NavisXtend
Provisioning Server

User’s Guide

Product Code: 80065
Revision 00
November 1998

ii11/16/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential

Copyright © 1998 Ascend Communications, Inc. All Rights Reserved.

This document contains information that is the property of Ascend Communications,
Inc. This document may not be copied, reproduced, reduced to any electronic medium
or machine readable form, or otherwise duplicated, and the information herein may
not be used, disseminated or otherwise disclosed, except with the prior written consent
of Ascend Communications, Inc.

Beta Draft Confidential

 in
ned,

dge,
not,
You

f the

ASCEND COMMUNICATIONS, INC. END-USER LICENSE AGREEMENT

ASCEND COMMUNICATIONS, INC. IS WILLING TO LICENSE THE ENCLOSED
SOFTWARE AND ACCOMPANYING USER DOCUMENTATION (COLLECTIVELY,
THE “PROGRAM”) TO YOU ONLY UPON THE CONDITION THAT YOU ACCEPT ALL
OF THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT. PLEASE READ
THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY
BEFORE OPENING THE PACKAGE(S) OR USING THE ASCEND SWITCH(ES)
CONTAINING THE SOFTWARE, AND BEFORE USING THE ACCOMPANYING USER
DOCUMENTATION. OPENING THE PACKAGE(S) OR USING THE ASCEND
SWITCH(ES) CONTAINING THE PROGRAM WILL INDICATE YOUR ACCEPTANCE
OF THE TERMS OF THIS LICENSE AGREEMENT. IF YOU ARE NOT WILLING TO BE
BOUND BY THE TERMS OF THIS LICENSE AGREEMENT, ASCEND IS UNWILLING
TO LICENSE THE PROGRAM TO YOU, IN WHICH EVENT YOU SHOULD RETURN
THE PROGRAM WITHIN TEN (10) DAYS FROM SHIPMENT TO THE PLACE FROM
WHICH IT WAS ACQUIRED, AND YOUR LICENSE FEE WILL BE REFUNDED. THIS
LICENSE AGREEMENT REPRESENTS THE ENTIRE AGREEMENT CONCERNING
THE PROGRAM BETWEEN YOU AND ASCEND, AND IT SUPERSEDES ANY PRIOR
PROPOSAL, REPRESENTATION OR UNDERSTANDING BETWEEN THE PARTIES.

1. License Grant. Ascend hereby grants to you, and you accept, a non-exclusive,
non-transferable license to use the computer software, including all patches, error
corrections, updates and revisions thereto in machine-readable, object code form only
(the “Software”), and the accompanying User Documentation, only as authorized
this License Agreement. The Software may be used only on a single computer ow
leased, or otherwise controlled by you; or in the event of inoperability of that
computer, on a backup computer selected by you. You agree that you will not ple
lease, rent, or share your rights under this License Agreement, and that you will
without Ascend’s prior written consent, assign or transfer your rights hereunder.
agree that you may not modify, reverse assemble, reverse compile, or otherwise
translate the Software or permit a third party to do so. You may make one copy o
Software and User Documentation for backup purposes. Any such copies of the
Software or the User Documentation shall include Ascend’s copyright and other
proprietary notices. Except as authorized under this paragraph, no copies of the
Program or any portions thereof may be made by you or any person under your
authority or control.

2. Ascend’s Rights. You agree that the Software and the User Documentation are
proprietary, confidential products of Ascend or Ascend’s licensor protected under US
copyright law and you will use your best efforts to maintain their confidentiality. You
further acknowledge and agree that all right, title and interest in and to the Program,
including associated intellectual property rights, are and shall remain with Ascend or
Ascend’s licensor. This License Agreement does not convey to you an interest in or to
the Program, but only a limited right of use revocable in accordance with the terms of
this License Agreement.
NavisXtend Provisioning Server User’s Guide 11/16/98iii

Beta Draft Confidential

 that

 with

 paid
our
this

ut of
sand

ntial,
3. License Fees. The license fees paid by you are paid in consideration of the license
granted under this License Agreement.

4. Term. This License Agreement is effective upon your opening of the package(s) or
use of the switch(es) containing Software and shall continue until terminated. You
may terminate this License Agreement at any time by returning the Program and all
copies or portions thereof to Ascend. Ascend may terminate this License Agreement
upon the breach by you of any term hereof. Upon such termination by Ascend, you
agree to return to Ascend the Program and all copies or portions thereof. Termination
of this License Agreement shall not prejudice Ascend’s rights to damages or any other
available remedy.

5. Limited Warranty. Ascend warrants, for your benefit alone, for a period of 90
days from the date of shipment of the Program by Ascend (the “Warranty Period”)
the program diskettes in which the Software is contained are free from defects in
material and workmanship. Ascend further warrants, for your benefit alone, that
during the Warranty Period the Program shall operate substantially in accordance
the User Documentation. If during the Warranty Period, a defect in the Program
appears, you may return the Program to the party from which the Program was
acquired for either replacement or, if so elected by such party, refund of amounts
by you under this License Agreement. You agree that the foregoing constitutes y
sole and exclusive remedy for breach by Ascend of any warranties made under
Agreement. EXCEPT FOR THE WARRANTIES SET FORTH ABOVE, THE PROGRAM
IS LICENSED “AS IS”, AND ASCEND DISCLAIMS ANY AND ALL OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTIES OF
NONINFRINGEMENT.

6. Limitation of Liability. Ascend’s cumulative liability to you or any other party
for any loss or damages resulting from any claims, demands, or actions arising o
or relating to this License Agreement shall not exceed the greater of: (i) ten thou
US dollars ($10,000) or (ii) the total license fee paid to Ascend for the use of the
Program. In no event shall Ascend be liable for any indirect, incidental, conseque
special, punitive or exemplary damages or lost profits, even if Ascend has been
advised of the possibility of such damages.
iv11/16/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential

in for

,
nse

ver a
o

and

he

d
ning
ion,

 to an
n

iling
le

tion,
of
 other
 party
ure
7. Proprietary Rights Indemnification. Ascend shall at its expense defend you
against and, subject to the limitations set forth elsewhere herein, pay all costs and
damages made in settlement or awarded against you resulting from a claim that the
Program as supplied by Ascend infringes a United States copyright or a United States
patent, or misappropriates a United States trade secret, provided that you: (a) provide
prompt written notice of any such claim, (b) allow Ascend to direct the defense and
settlement of the claim, and (c) provide Ascend with the authority, information, and
assistance that Ascend deems reasonably necessary for the defense and settlement of
the claim. You shall not consent to any judgment or decree or do any other act in
compromise of any such claim without first obtaining Ascend’s written consent. In
any action based on such a claim, Ascend may, at its sole option, either: (1) obta
you the right to continue using the Program, (2) replace or modify the Program to
avoid the claim, or (3) if neither (1) nor (2) can reasonably be effected by Ascend
terminate the license granted hereunder and give you a prorata refund of the lice
fee paid for such Program, calculated on the basis of straight-line depreciation o
five-year useful life. Notwithstanding the preceding sentence, Ascend will have n
liability for any infringement or misappropriation claim of any kind if such claim is
based on: (i) the use of other than the current unaltered release of the Program
Ascend has provided or offers to provide such release to you for its then current
license fee, or (ii) use or combination of the Program with programs or data not
supplied or approved by Ascend to the extent such use or combination caused t
claim.

8. Export Control. You agree not to export or disclose to anyone except a Unite
States national any portion of the Program supplied by Ascend without first obtai
the required permits or licenses to do so from the US Office of Export Administrat
and any other appropriate government agency.

9. Governing Law. This License Agreement shall be construed and governed in
accordance with the laws and under the jurisdiction of the Commonwealth of
Massachusetts, USA. Any dispute arising out of this Agreement shall be referred
arbitration proceeding in Boston, Massachusetts, USA by the American Arbitratio
Association.

10. Miscellaneous. If any action is brought by either party to this License
Agreement against the other party regarding the subject matter hereof, the preva
party shall be entitled to recover, in addition to any other relief granted, reasonab
attorneys’ fees and expenses of arbitration. Should any term of this License
Agreement be declared void or unenforceable by any court of competent jurisdic
such declaration shall have no effect on the remaining terms hereof. The failure
either party to enforce any rights granted hereunder or to take action against the
party in the event of any breach hereunder shall not be deemed a waiver by that
as to subsequent enforcement of rights or subsequent actions in the event of fut
breaches.
NavisXtend Provisioning Server User’s Guide 11/16/98v

Beta Draft Confidential

... xix

.. xxi

... xxi
... xxii
... xxii
.. xxiii
. xxiii

.. 1-1

. 1-3
... 1-4
.. 1-7
... 1-7
. 1-8
... 1-8
.. 1-8
. 1-10
1-10
.. 1-12
. 1-13
. 1-16
 1-18

. 1-20
 1-21
. 1-21
 1-21
 1-21
 1-22
 1-22
Contents

About This Guide
What You Need to Know... xvii
Documentation Reading Path ... xviii
How to Use This Guide... xix
What’s New in This Release?..
What’s New in This Guide?..
Conventions ...
Related Documents ...
Customer Comments...
Customer Support ...
Terminology...

Chapter 1 Overview
NavisXtend Provisioning Server...
Application Toolkit..

Synchronous and Asynchronous Functions ..
Functions That Take an Argument List..
Function Names...

Toolkit Functionality ...
Session Control Functions...
Operational Functions ..
Select Loop Processing Functions...
Utility Functions...

Managed Objects ..
Object Types ..
Containment Hierarchy..
Naming Conventions for Objects..
Descriptions of Object Types...

CVT_Aps..
CVT_AssignedSvcSecScn ..
CVT_Card ..
CVT_CardTca ..
CVT_ChanPerformanceMonitor ..
CVT_Channel...
NavisXtend Provisioning Server User’s Guide rvii

Contents

Beta Draft Confidential
CVT_Circuit ... 1-23
CVT_Customer .. 1-24
CVT_DefinedPath .. 1-24
CVT_LPort... 1-25
CVT_MLFRBinding .. 1-26
CVT_NetCac .. 1-26
CVT_Network .. 1-26
CVT_PerformanceMonitor .. 1-27
CVT_PFdl .. 1-27
CVT_PMPCkt .. 1-27
CVT_PMPCktRoot .. 1-28
CVT_PMPSpvcLeaf... 1-28
CVT_PMPSpvcRoot .. 1-28
CVT_PnniNode .. 1-28
CVT_PPort ... 1-29
CVT_PPortTca ... 1-29
CVT_RefTimeServer ... 1-29
CVT_ServiceName .. 1-29
CVT_SmdsAddressPrefix .. 1-29
CVT_SmdsAlienGroupAddress... 1-30
CVT_SmdsAlienIndividualAddress... 1-30
CVT_SmdsCountryCode.. 1-30
CVT_SmdsGroupScreen .. 1-31
CVT_SmdsIndividualScreen.. 1-31
CVT_SmdsLocalIndividualAddress .. 1-31
CVT_SmdsNetwideGroupAddress .. 1-31
CVT_SmdsSSIIndividualAddress.. 1-31
CVT_SmdsSwitchGroupAddress... 1-32
CVT_Spvc .. 1-32
CVT_SvcAddress... 1-32
CVT_SvcConfig... 1-33
CVT_SvcCUG.. 1-33
CVT_SvcCUGMbr... 1-33
CVT_SvcCUGMbrRule ... 1-34
CVT_SvcNetworkId... 1-34
CVT_SvcNodePrefix.. 1-34
CVT_SvcPrefix .. 1-35
CVT_SvcSecScn .. 1-36
CVT_SvcSecScnActParam .. 1-36
CVT_SvcUserPart .. 1-36
CVT_Switch... 1-36
CVT_TrafficDesc... 1-37
CVT_TrafficShaper.. 1-37
CVT_Trunk .. 1-38
CVT_VPCITable.. 1-38
CVT_VPN.. 1-38

Valid Object Types for Operational Functions... 1-39
Object Attributes... 1-41
viii11/24/98 NavisXtend Provisioning Server User’s Guide

Contents

Beta Draft Confidential
Circuit Provisioning .. 1-41
Related Error Reporting ... 1-42
Environment Variable to Override Status Check ... 1-42

Bit Mask.. 1-43
SVC Addressing.. 1-44

String Conversion... 1-45
E.164native... 1-46
AESA Addresses .. 1-46

Example 1 .. 1-46
Example 2 .. 1-47
Example 3 .. 1-47
Example 4 .. 1-47
Example 5 .. 1-48

DefaultRoute .. 1-48
UserPart .. 1-48
X.121 .. 1-48

Class B Addressing ... 1-49
General API Usage ... 1-49

C Program... 1-49
C++ Program .. 1-50

Chapter 2 Installation and Administration
Prerequisites.. 2-1

Provisioning Server Requirements... 2-1
Server Hardware .. 2-1
Server Software.. 2-2

Provisioning Client Requirements.. 2-2
Client Hardware... 2-2
Client Software .. 2-3

Switch Requirements.. 2-3
Network Requirements... 2-3

Installation Instructions... 2-3
Installing the Provisioning Software in a Single-System Configuration 2-4
Installing the Provisioning Software in a Two-System Configuration 2-7
Post-Installation Tasks ... 2-7

Modifying the Configuration File.. 2-7
Testing the Server .. 2-8
Setting Environment Variables.. 2-8
Testing the CLI .. 2-9
Recompiling an Existing Provisioning Client ... 2-9

Installed Files ... 2-10
Programming Files ... 2-10

Setting Environment Variables ... 2-11
Configuring the CLI ... 2-12

Identifying the Provisioning Server to the CLI ... 2-12
Specifying Modification Type ... 2-12
Specifying Retry Behavior... 2-13
Specifying Security Settings.. 2-14
NavisXtend Provisioning Server User’s Guide ix

Contents

Beta Draft Confidential
Controlling SNMP Parameters .. 2-14
Configuring the Provisioning Client .. 2-14

Enabling a Client Trace File .. 2-15
Controlling SNMP Parameters .. 2-15

Configuring the Provisioning Server.. 2-15
Identifying the Provisioning Server Port ... 2-16
Identifying the MIB Agent Port... 2-16
Specifying the Core File Location ... 2-17
Enabling Server Trace Files... 2-17
Controlling SNMP Parameters .. 2-18
Controlling Context Timeout... 2-18
Controlling MIB Cache ... 2-19
Controlling Object Locking ... 2-19
Disabling Card Status Checking .. 2-20
Specifying Community Strings.. 2-20
Controlling SMDS Addresses.. 2-21
Implementing the Security Feature.. 2-21

Stopping and Restarting the Provisioning Server ... 2-22
Stopping and Restarting the CLI... 2-22
Troubleshooting Problems .. 2-22

Problem: Requests Frequently Time Out ... 2-23
Symptoms .. 2-23
Possible Causes and Solutions... 2-23

Problem: Object Is Locked by Others .. 2-24
Symptoms .. 2-24
Possible Causes and Solutions... 2-24

Technical Support... 2-25
Information Checklist .. 2-25

Un-installation Instructions .. 2-27
Writing a Provisioning Application .. 2-27

Upgrading an Existing Application.. 2-28

Chapter 3 Using the CLI
Using the CLI.. 3-1

CLI Usage Overview.. 3-2
Syntax .. 3-2

cvadd ... 3-5
Purpose ... 3-5
Command Syntax ... 3-5
Parameters .. 3-5
Notes... 3-5
Examples .. 3-6

cvaddmember.. 3-7
Purpose ... 3-7
Command Syntax ... 3-7
Parameters .. 3-7
Notes... 3-7
Example.. 3-8
x11/24/98 NavisXtend Provisioning Server User’s Guide

Contents

Beta Draft Confidential
cvCreateChanPerformanceMonitorId ... 3-9
Purpose ... 3-9
Command Syntax ... 3-9
Parameters .. 3-9
Notes... 3-9
Example.. 3-9

cvdelete ... 3-10
Purpose ... 3-10
Command Syntax ... 3-10
Parameters .. 3-10
Notes... 3-10
Example.. 3-10

cvdeletemember .. 3-11
Purpose ... 3-11
Command Syntax ... 3-11
Parameters .. 3-11
Notes... 3-11
Example.. 3-12

cvget.. 3-13
Purpose ... 3-13
Command Syntax ... 3-13
Parameters .. 3-13
Notes... 3-13
Examples .. 3-13

cvgetdiag ... 3-15
Purpose ... 3-15
Command Syntax ... 3-15
Parameters .. 3-15
Notes... 3-15
Examples .. 3-15

cvgetoperinfo .. 3-16
Purpose ... 3-16
Command Syntax ... 3-16
Parameters .. 3-16
Notes... 3-16
Examples .. 3-16

cvhelp.. 3-17
Purpose ... 3-17
Command Syntax ... 3-17
Parameters .. 3-17
Notes... 3-17
Examples .. 3-17

cvlistallcontained .. 3-18
Purpose ... 3-18
Command Syntax ... 3-18
Parameters .. 3-18
Notes... 3-18
Example.. 3-20
NavisXtend Provisioning Server User’s Guide xi

Contents

Beta Draft Confidential
cvlistcontained .. 3-21
Purpose ... 3-21
Command Syntax ... 3-21
Parameters .. 3-21
Notes... 3-21
Example.. 3-24

cvmodify ... 3-25
Purpose ... 3-25
Command Syntax ... 3-25
Parameters .. 3-25
Notes... 3-25
Example.. 3-26

cvstartdiag ... 3-27
Purpose ... 3-27
Command Syntax ... 3-27
Parameters .. 3-27
Notes... 3-27
Examples .. 3-27

cvstopdiag ... 3-28
Purpose ... 3-28
Command Syntax ... 3-28
Parameters .. 3-28
Notes... 3-28
Examples .. 3-28

cvupdatediag ... 3-29
Purpose ... 3-29
Command Syntax ... 3-29
Parameters .. 3-29
Notes... 3-29
Examples .. 3-29

CLI Examples ... 3-30
Sample CLI Format .. 3-30
CVT_APS... 3-30
CVT_AssignedSvcSecScn ... 3-30
CVT_Card .. 3-31
CVT_CardTca .. 3-31
CVT_Channel... 3-31
CVT_Circuit ... 3-31

ServiceName Endpoints... 3-31
LPort Endpoints ... 3-32

CVT_Customer .. 3-33
CVT_DefinedPath .. 3-33
CVT_LPort... 3-33
CVT_NetCac .. 3-35
CVT_PerformanceMonitor .. 3-35
CVT_PFdl .. 3-35
CVT_PMPCkt .. 3-35
xii11/24/98 NavisXtend Provisioning Server User’s Guide

Contents

Beta Draft Confidential
CVT_PMPCktRoot .. 3-35
CVT_PMPSpvcLeaf... 3-36
CVT_PMPSpvcRoot .. 3-36
CVT_PnniNode .. 3-37
CVT_PPort ... 3-37
CVT_PPortTca ... 3-37
CVT_RefTimeServer ... 3-37
CVT_ServiceName .. 3-37
CVT_SmdsAddressPrefix .. 3-37
CVT_SmdsAlienGroupAddress... 3-37
CVT_SmdsAlienIndividualAddress... 3-37
CVT_SmdsCountryCode.. 3-38
CVT_SmdsGroupScreen .. 3-38
CVT_SmdsIndividualScreen.. 3-38
CVT_SmdsLocalIndividualAddress .. 3-38
CVT_SmdsNetwideGroupAddress .. 3-38
CVT_SmdsSwitchGroupAddress... 3-38
CVT_Spvc .. 3-38
CVT_SvcAddress... 3-38
CVT_SvcConfig... 3-39
CVT_SvcCUG.. 3-39
CVT_SvcCUGMbr... 3-39
CVT_SvcCUGMbrRule ... 3-39
CVT_SvcNetworkId... 3-39
CVT_SvcNodePrefix.. 3-40
CVT_SvcPrefix .. 3-40
CVT_SvcSecScn .. 3-40
CVT_SvcSecScnActParam .. 3-40
CVT_SvcUserPart .. 3-40
CVT_Switch... 3-40
CVT_TrafficDesc... 3-41
CVT_TrafficShaper.. 3-41
CVT_Trunk .. 3-41
CVT_VPCITable.. 3-42
CVT_VPN.. 3-42

Chapter 4 Using the SNMP MIB
About the Enterprise-specific MIB... 4-1

Community Strings... 4-2
MIB Structure ... 4-2

Segmented Information in Multiple Tables.. 4-3
Row Aliasing.. 4-7
Column Access Specifiers.. 4-8
Additional Table Entries .. 4-8

RowStatus Attribute... 4-8
ModifyType Attribute.. 4-9
NumRetries Attribute... 4-9

Using the MIB... 4-11
NavisXtend Provisioning Server User’s Guide xiii

Contents

Beta Draft Confidential
Using the SNMP Commands ... 4-11
Command Error Table.. 4-11
MIB Cache and Database Locking... 4-12

Row Creation ... 4-13
Row Modification .. 4-14
get-next Operations.. 4-15

Specifying the Object Identifier ... 4-16
Example 1: get Command.. 4-16
Example 2: get-next Command ... 4-17
Example 3: set Command to Create an ATM LPort.................................. 4-18
Example 4: set command to Modify an ATM LPort 4-21
Example 5: set Command to Delete an ATM LPort.................................. 4-23
Example 6: set Command to Create an ATM Circuit................................ 4-25
Example 7: set Command to Modify an ATM Circuit 4-28
Example 8: set Command to Delete an ATM Circuit................................ 4-30
Example 9: set Command to Create a VPN Indexed by Name 4-31
Example 10: set Command to Create a ServiceName Indexed by Name.. 4-33
Example 11: set command to Modify a ServiceName Indexed by Name . 4-35
Example 12: set command to Delete a ServiceName Indexed by Name... 4-37

Index
xiv11/24/98 NavisXtend Provisioning Server User’s Guide

Contents

NavisXtend Provisioning Server User’s Guide 11/24/98xv

Beta Draft Confidential

List of Figures

Figure 1-1. Components in the NavisXtend Provisioning Server System1-2
Figure 1-2. Application Toolkit Organization..1-4
Figure 1-3. Flow Between Client and Server for a Synchronous Function........1-5
Figure 1-4. Flow Between Client and Server for an Asynchronous Function ...1-6
Figure 1-5. Containment Hierarchy for Managed Objects1-17
Figure 4-1. Creating an ATM LPort...4-20
Figure 4-2. Modifying an ATM LPort ...4-22
Figure 4-3. Deleting an ATM LPort Using its VPI/VCI Pair...........................4-24
Figure 4-4. Deleting an ATM LPort Using its Interface Number4-25
Figure 4-5. Creating an ATM Circuit...4-27
Figure 4-6. Modifying an ATM Circuit Using its Circuit Number..................4-29
Figure 4-7. Deleting an ATM Circuit Using its Circuit Number4-31
Figure 4-8. Creating a VPN Indexed by Name ..4-32
Figure 4-9. Creating a ServiceName Indexed by Name...................................4-34
Figure 4-10. Modifying a ServiceName Indexed by Name4-36
Figure 4-11. Deleting a ServiceName Indexed by Name...................................4-38

xvi11/24/98 NavisXtend Provisioning Server User’s Guide

Contents

Beta Draft Confidential

List of Tables

Table 1-1. Naming Conventions for Toolkit Functions 1-7
Table 1-2. Object Types Supported by the Provisioning Server 1-13
Table 1-3. Naming Conventions for Object ID ... 1-18
Table 1-4. Valid Object Types for Operational Functions 1-39
Table 1-5. Bit Mask Configuration .. 1-43
Table 1-6. Calculated nBits Values ... 1-44
Table 2-1. Programming Files for Client Development 2-10
Table 3-1. Valid Parent and Child Object Types .. 3-18
Table 3-2. Valid Parent and Child Object Types .. 3-22
Table 4-1. Information Required for Creating Specific LPorts 4-3
Table 4-2. Information Required for Creating Specific Circuits 4-5
Table 4-3. Error Code Mapping from SNMPv2 to SNMPv1 4-12

Beta Draft Confidential

cts.

rver
About This Guide

The NavisXtend Provisioning Server User’s Guide describes how to use the
NavisXtend™ Provisioning Server Application Toolkit to develop a provisioning
client — an application that runs on a workstation in an Ascend™ network and
interacts with a Provisioning Server. You use the client to query and configure switch
nodes, cards, physical ports, logical ports, circuits, and other objects. The Application
Toolkit includes a special series of libraries and header files that support client
development.

In addition, the NavisXtend Provisioning Server User’s Guide describes how to use
the Toolkit Command Line Interface (CLI) to develop a provisioning script — a set of
shell commands used for either interactive or batch provisioning of network obje

The NavisXtend Provisioning Server User’s Guide also describes how to use the
enterprise-specific MIB, which provides SNMP access to the Provisioning Server.

What You Need to Know

This guide assumes that you have a working knowledge of network management and
provisioning operations. This guide assumes that you have installed the Ascend switch
hardware.

To develop a provisioning client, you need to be familiar with programming in C or
C++ in a UNIX environment. Programming experience is not required if you plan to
use the Command Line Interface only.

To use the SNMP MIB, you need to be familiar with the SNMP protocol, operations
supported by the protocol, and MIB structure in general.

Be sure to read the Software Release Notice (SRN) for NavisXtend Provisioning Se
that accompanies this product. The SRN contains the most current product
information and requirements.
NavisXtend Provisioning Server User’s Guide xvii

About This Guide
Documentation Reading Path

Beta Draft Confidential
Documentation Reading Path

The NavisXtend Provisioning Server document set includes the following manuals:

If you are using the NavisXtend Provisioning Server
Application Toolkit for the first time, read the entire
NavisXtend Provisioning Server User’s Guide, which
describes the interface, features, and typical applications
for the NavisXtend Provisioning Server Application
Toolkit. It explains, in step-by-step format, what is
involved in developing a provisioning client and a
provisioning script. It also describes how to use the
SNMP MIB.

Once you are ready to begin developing a provisioning
client, use this guide for detailed information on the
NavisXtend Provisioning Server Application
Programming Interface (API).

ASCEND

NavisXtend
Provisioning Server
Enterprise MIB
Definitions

ASCEND

NavisXtend
Provisioning Server
Object Attribute
Definitions

ASCEND

NavisXtend
Provisioning Server
Programmer’s
Reference

ASCEND

NavisXtend
Provisioning Server
User’s Guide

Use this guide for detailed information on the various
object types supported by the Provisioning Server and
their associated attributes.

If you are using the SNMP MIB to access the
Provisioning Server, use this guide for detailed
information on the MIB.
xviii11/16/98 NavisXtend Provisioning Server User’s Guide

About This Guide
How to Use This Guide

Beta Draft Confidential
How to Use This Guide

The following table summarizes the information contained in this guide:

What’s New in This Release?

The following table lists the new product features in this release:

Read To Learn About

Chapter 1 General aspects of the NavisXtend Provisioning Server and the
client and how they interact with other components on the
network. This chapter describes the interface, features, and
typical applications of the NavisXtend Provisioning Server
Application Toolkit.

Chapter 2 How to install and administer the various components of the
Provisioning Server system. This chapter also describes the
steps required to develop a provisioning application.

Chapter 3 How to use the CLI.

Chapter 4 How to use the SNMP MIB.

New Features/Functions Description

Compatibility with NavisCore database,
version 04.01.01.00

The Provisioning Server Release 4.1
interacts with the NavisCore version
04.01.01.00 database. Keep in mind that
the server does not support all the new
NavisCore 04.01.01.00 object types.

Support of the following new cards:

• 1-port channelized DS3-1-0 card
(on B-STDX)

• 6-port DS3 Frame card (on CBX)

• CP40, CP50

• SP30, SP 40

The Provisioning Server Release 4.1 can
manage these cards.

Limited support of GX 550 switch The Provisioning Server Release 4.1
supports configuration of elements that
are part of GX 550 switches.
NavisXtend Provisioning Server User’s Guide 11/16/98xix

About This Guide
What’s New in This Release?

Beta Draft Confidential
Support of the following new objects:

• Card Threshold Crossing Alarm

• Circuit Defined Path

• PPort Threshold Crossing Alarm

• Private Network-to-Network (PNNI)
Node

• Reference Time Server

• SvcNetwork ID

• Trunk

• VPCI Table

The Provisioning Server Release 4.1
supports these new objects and their
associated attributes.

SNMPv2c protocol The Provisioning Server SNMP agent
supports the SNMPv2c protocol.

Improved reliability and accuracy of
circuit provisioning

Circuit provisioning on the B-STDX
8000/9000 and the CBX 500 is improved,
preventing circuits from being partially
provisioned and the database from
becoming out-of-sync with the switch.

Diagnostic trace information added Diagnostic trace information has been
added to the Provisioning Server to print
MIB interface related interaction. This
information can assist in troubleshooting
problems.

Support of a VPI value of 0 or greater The Provisioning Server supports a VPI
value of 0 or greater when provisioning
an ATM OPT Cell Trunk LPort on the
CBX 500 switch.

Real time status of NavisCore objects GetOperInfo, an operational function,
retrieves the real time status of NavisCore
objects at the PVC level. API, CLI, and
MIB interfaces are available.

Diagnostics A set of operational functions performs
diagnostic services for troubleshooting at
the Circuit, Channel, PPort, and LPort
levels.

New Features/Functions Description
xx11/16/98 NavisXtend Provisioning Server User’s Guide

About This Guide
What’s New in This Guide?

Beta Draft Confidential
What’s New in This Guide?

The following table lists the enhancements to this guide:

Conventions

This guide uses the following conventions:

Changes/Enhancements to this Guide Described in
Chapter

Removed the containment hierarchy tables that listed the parent-child
relation used to build object IDs to name objects in the network.

This information is now included in attribute matrixes in the NavisXtend
Provisioning Server Object Attribute Definitions.

Previously in
Appendix A

Real time status and diagnostic operational function descriptions. 1

Real time status and diagnostic CLI command descriptions 3

New object descriptions. 1

SNMPv2 support description. 4

Convention Indicates Example

Courier Program source code.

User input on a separate line and
screen or system output.

unsigned long

Please wait...

Helvetica Structure names or other source
code in body text.

CvObjectId structure

Bold Function name,
CLI command,
UNIX command, or
user input in body text.

CvCreateNetworkId

cvaddmember

select

Type cd install and ...

Italics Variable used by a function or
command.

Book titles, new terms, and
emphasized text.

UserArg argument

NavisXtend Provisioning
Server User’s Guide

Boxes around text Notes, warnings, cautions. See examples below.
NavisXtend Provisioning Server User’s Guide 11/16/98xxi

About This Guide
Related Documents

Beta Draft Confidential

turn
Related Documents

This section lists the related Ascend documentation that you may find helpful to read.

• Network Management Station Installation Guide (Product code: #80014)

• NavisCore Frame Relay Configuration Guide (Product code: #80071)

• NavisCore ATM Configuration Guide (Product code: #80072)

• NavisCore SMDS Configuration Guide (Product code: #80073)

Customer Comments

Customer comments are welcome. Please respond in one of the following ways:

• Fill out the Customer Comment Form located at the back of this guide and re
it to us.

• E-mail your comments to cspubs@ascend.com

• FAX your comments to 978-692-1510, attention Technical Publications.

Notes provide additional information or helpful suggestions that may apply to
the subject text.

!
Cautions notify the reader to proceed carefully to avoid possible equipment
damage or data loss.

Warnings notify the reader to proceed carefully to avoid possible personal
injury.
xxii11/16/98 NavisXtend Provisioning Server User’s Guide

About This Guide
Customer Support

Beta Draft Confidential
Customer Support

To obtain release notes, technical tips, or support, access the Ascend FTP Server or
contact the Technical Assistance Center at:

• 1-800-DIAL-WAN or 1-978-952-7299 (U.S. and Canada)

• 0-800-96-2229 (U.K.)

• 1-978-952-7299 (all other areas)

Terminology

The NavisXtend Provisioning Server is referred to in text using any of the following
terms:

• NavisXtend Provisioning Server

• Provisioning Server

• server

The NavisXtend Provisioning Server Application Toolkit is referred to in text using
any of the following terms:

• NavisXtend Provisioning Server Application Toolkit

• Application Toolkit

• toolkit

The NavisXtend Provisioning client is referred to in text using any of the following
terms:

• NavisXtend Provisioning client

• Provisioning client

• client

• application

The product name for CascadeView has changed to NavisCore™.
NavisXtend Provisioning Server User’s Guide 11/16/98xxiii

NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
1

 and

to
e.

t

tabase.
Overview

This chapter describes what you need to know before developing an NavisXtend
Provisioning client or a provisioning script. It describes the features of the Application
Programming Interface (API) and presents some basic procedures that show how to
perform tasks with the API.

NavisXtend Provisioning Server

The Ascend NavisXtend Provisioning Server is based on a client-server network
management architecture:

NavisXtend Provisioning Client — The client is an application responsible for
generating requests to provision Ascend network components. Much of the
provisioning functionality of NavisCore is available: the client can query and
configure Frame Relay, ATM, ATM Network Interworking, and SMDS objects
including switch nodes, cards, physical ports, logical ports, circuits, and so on.

NavisXtend Provisioning Server — The server is a UNIX process that responds to
requests from NavisXtend Provisioning clients and updates the Ascend switches
the NavisCore database.

The NavisXtend Provisioning client runs on a workstation and interacts with an
NavisXtend Provisioning Server. The NavisXtend Provisioning Server responds
client requests to manage Ascend switches and updates the NavisCore databas
While there can be multiple instances of NavisCore, the NavisXtend Provisioning
client, and the NavisXtend Provisioning Server running on the network, any clien
typically interacts with only one Provisioning Server at a time. Each Provisioning
Server can manage all the Ascend switches and update the shared NavisCore da
1-1

Beta Draft Confidential
Overview
NavisXtend Provisioning Server
Because the Provisioning Server shares the same Sybase database with other
NavisCore processes, the server should reside in the same TCP/IP subnetwork as
NavisCore and the Sybase database. As the Provisioning Server makes changes to the
Ascend network, it maintains consistency with NavisCore. The Provisioning Server
uses a locking mechanism so that NavisXtend Provisioning clients and other
NavisCore processes that share the same database cannot update the same object at the
same time.

Figure 1-1 shows the relationship among the NavisXtend Provisioning client, the
NavisXtend Provisioning Server, and other components on the network.

Figure 1-1. Components in the NavisXtend Provisioning Server System

NavisCore
Database

 C

User-supplied NavisXtend Provisioning Clients

NavisCore

NavisXtend Provisioning Server

TCP/IP

TCP/IP

Ascend SwitchAscend SwitchAscend Switch

TCP/IP

API
C++
API

CLI MIB

1-211/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Application Toolkit

it.

s
ce
nous

sue
The NavisXtend Provisioning Server product includes the following software:

NavisXtend Provisioning Server — Installed and maintained on a UNIX
workstation on a TCP/IP network.

NavisXtend Provisioning Server Application Toolkit — Installed and used by the
application developer to create an NavisXtend Provisioning client or script that
submits requests to the Provisioning Server.

The next section describes the NavisXtend Provisioning Server Application Toolk

Application Toolkit

The Application Toolkit provides the following components:

API — Used by an application developer to write a new Provisioning client or to
integrate a client into an existing provisioning system.

For the convenience of the programmer, the API functions are available in variou
versions. For example, the Application Toolkit provides both a C and C++ interfa
for each API function. And, the toolkit provides both a synchronous and asynchro
version of each function that performs provisioning operations.

For details on how to use the API to develop a Provisioning client, see Chapter 2 in
this guide and to the NavisXtend Provisioning Server Programmer’s Reference.

Command Line Interface (CLI) — Used to build a provisioning script. The CLI is a
set of command-line programs that hide the code details of the API. Users can is
these commands from any UNIX shell to provision network objects in either
interactive or batch mode.

For details on how to use the CLI to develop a provisioning script, see Chapter 3.

Enterprise-specific MIB — Used to access switches in the network via SNMP
commands. The MIB supports all the attributes and functionality of the API and
provides access via SNMP get, set, and get-next operations.

For details on how to use the MIB to develop a provisioning script, see Chapter 4 in
this guide and to the NavisXtend Provisioning Server Enterprise MIB Definitions.
NavisXtend Provisioning Server User’s Guide 11/24/981-3

Beta Draft Confidential
Overview
Application Toolkit

on
is is

r a
til the
Figure 1-2 illustrates how the Application Toolkit is organized.

Figure 1-2. Application Toolkit Organization

Synchronous and Asynchronous Functions

The Application Toolkit provides two communication methods for each API function
that performs provisioning operations. You can issue either:

• A synchronous function and wait for a response to your request. The applicati
waits for the request to complete before continuing with other processing. Th
also known as a blocking request, because each function blocks to completion.

• An asynchronous function and perform other operations while your request is
being processed.

Figure 1-3 shows the flow between the application and the Provisioning Server fo
synchronous request. The application does not regain control of the program un
response returns from the server.

API

C

Asynchronous
function

Synchronous
function

C++

Asynchronous
function

Synchronous
function

Application
Toolkit

CLIMIB
1-411/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Application Toolkit
Figure 1-3. Flow Between Client and Server for a Synchronous Function

With an asynchronous function, the application continues with other work while
waiting for the response. The application supplies a callback handler to the API. The
function invokes this callback handler function to deliver the response from the server.

CvsGetObject (...)

Client Code Server Code

receives request

sends response

1

2

3

Program control
flow

Request-response
message flow
NavisXtend Provisioning Server User’s Guide 11/24/981-5

Beta Draft Confidential
Overview
Application Toolkit
 Figure 1-4 shows the flow between the application and the Provisioning Server for an
asynchronous request.

Figure 1-4. Flow Between Client and Server for an Asynchronous Function

During an asynchronous request, the following steps occur:

select ()

CvProcessEvents ()

CvaGetObject (...)

return

responseHandler ()
{
...
}

Client Code Server Code

receives request

sends response

Program control
flow

Request-response
message flow

1

2

4

3

5
API Library

6

7
8

Step 1 The application code issues an asynchronous function.

Step 2 The application sends the request to the Provisioning Server.

Step 3 The application immediately returns to the select loop. If the application calls
select directly, it needs to know what file descriptor is being used for
communication with the server. The application can issue CvGetSelectInfo to
obtain the information needed to pass to select.

Step 4 The Provisioning Server processes the request.

Step 5 The Provisioning Server sends the response to select.
1-611/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Application Toolkit

ase.
Synchronous functions involve less coding but may be less efficient, because the
process waits while they are processed.

Asynchronous functions allow your application to continue processing rather than
wait for completion. However, asynchronous functions require additional coding. The
application programmer must provide the callback handler and must make sure that
the application invokes the API appropriately when the response returns from the
server. Specifically, the application must be built around the UNIX select system call
and must ensure that all processing is done in between calls to select.

Functions That Take an Argument List

Most of the C functions that perform provisioning operations on network components
take one or more attributes. The attributes are specified in an argument list. The
Application Toolkit provides two options for specifying an argument list. Before you
issue a function that takes an argument list, you can either:

• Issue a single function (CvArgsMakeVals or CvArgsMakeIds) that takes a
variable number of arguments and builds the required data structure.

• Issue a series of utility functions that create (CvArgsMake) and fill in
(CvArgsSetAttrType) the required data structure.

In C++, multiple constructors for the argument object (CvClient::Args) handle
variable argument lists.

Function Names

The name of each function varies, depending on the version of the function. Table 1-1
shows the different names for the same function that adds an object to the datab

Step 6 When select notifies the application of pending messages from the server, the
application issues CvProcessEvents, which goes into the API library to receive
and process the response.

Step 7 In turn, the API passes the response to the client response handler.

Step 8 The client code continues.

Table 1-1. Naming Conventions for Toolkit Functions

Version Function Name

Asynchronous C function CvaAddObject

Synchronous C function CvsAddObject
NavisXtend Provisioning Server User’s Guide 11/24/981-7

Beta Draft Confidential
Overview
Toolkit Functionality

.

s.

.

nt

it

ost
Toolkit Functionality

The toolkit functions are divided into the following groups:

• Session Control functions open and close sockets and control session settings

• Operational functions perform provisioning operations on network component

• Select Loop Processing functions support loop processing of the select system
call.

• Utility functions build argument lists, handle initialization, and manage storage

The following sections describe the toolkit functions by group.

Session Control Functions

Session control functions open and close sockets and control session settings.

The session control functions are:

Connect, open — Establishes a session with the Provisioning Server.

Close — Terminates a session with the Provisioning Server.

SetModifyType — Specifies whether updates are made to the network compone
and the database, or to the database only.

SetNumRetries — Sets the number of retries to check card status preceding circu
provisioning requests.

Operational Functions

Operational functions perform provisioning operations on network components. M
operational functions of the API have a CLI command counterpart.

C++ function CvClient::addObject

CLI command cvadd

Table 1-1. Naming Conventions for Toolkit Functions

Version Function Name

The CLI uses environment variables to specify session control settings (for
details, see “Setting Environment Variables” on page2-11).
1-811/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Toolkit Functionality

e

n.

of

he

 The operational functions and CLI commands are:

AddObject (Object ID, Attributes) — Creates an object in the database and
(optionally) in the switch.

AddMember (Object ID, Object ID) — Adds a member to an object list.

DeleteObject (Object ID) — Deletes an object from the database and (optionally)
from the switch.

DeleteMember (Object ID, Object ID) — Deletes a member from an object list.

GetDiagObject (Object ID, Attributes) — Retrieves object diagnostic results in th
network.

GetErrorMsg — Returns an error message.

GetList (Object ID, ObjectList, Attributes) — Retrieves the values of specific
object attributes that are specified as an ObjectList.

GetObject (Object ID, Attributes) — Retrieves the values of specific attributes of
an object.

GetOperInfoObject (Object ID, Attributes) — Retrieves the values of specific
OperInfo attributes from the switch.

GetResponseArgs — Returns the argument list returned by a synchronous functio

ListAllContainedObjects (Object ID) — Queries the database for a list of objects
any type that are contained by a specified parent.

ListContainedObjects (Object ID, type, Attributes) — Queries the database for a
list of objects of the given type that are contained by a specified parent.

ModifyObject (Object ID, Attributes) — Modifies specific attributes of an object in
the database and (optionally) in the switch.

ModifyList (Object ID, ObjectList, Attributes) — Modifies specific object
attributes that are specified as an ObjectList in the database and (optionally) in t
switch.

StartDiagObject (Object ID, Attributes) — Starts diagnostics on an object in the
network.

StopDiagObject (Object ID, Attributes) — Stops diagnostics on an object in the
network.

UpdateDiagObject (Object ID, Attributes) — Modifies diagnostics on an object in
the network.

The following operational functions are used by the API only:
NavisXtend Provisioning Server User’s Guide 11/24/981-9

Beta Draft Confidential
Overview
Toolkit Functionality

leting

Is
VCBH

 an

he

t.

.

 in

tus.
NextObject — Retrieves the next object in a list of objects.

The operational functions are supported for most target object types, with a few
restrictions. For example, you cannot specify a switch when you issue an Add or
Delete command, because the Provisioning Server does not support adding or de
switches.

Select Loop Processing Functions

Select Loop Processing functions support loop processing of the select system call.
The functions that support select loop processing are:

Callback Handler — Is the prototype for a function supplied by the client. The AP
call these callback handlers to deliver a response to an asynchronous request. C
is the CvArgs callback function, and OLCBH is the ObjectList callback function.

GetSelectInfo — Obtains information needed to pass to a select system call.

ProcessEvents — Processes activity on file descriptors to receive responses from
asynchronous request.

Timeout — Determines if an outstanding asynchronous request timed out.

Utility Functions

Utility functions build argument lists, handle initialization, and manage storage. T
utility functions are:

ArgsMake — Creates an argument list.

ArgsMakeVals, ArgsMakeIds — Creates and adds arguments to an argument lis

ArgsFree — Deletes a pointer to an argument list created either explicitly or
implicitly by another function.

ArgsSetAttrType — A series of functions that add or modify an argument in an
argument list.

ArgsGetAttrType — A series of functions that read values out of an argument list

ArgsCount — Retrieves the number of arguments in an argument list.

ArgsIdAt — Retrieves a specified argument ID in an argument list.

ArgsTypeAt, ArgsValueAt — Retrieves the type or value of a specified argument
an argument list.

ArgsErrorIndex — Indicates if any argument in an argument list has an error sta
1-1011/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Toolkit Functionality

ue

t

t uses

g

ArgsExist — Determines if a specified argument exists in an argument list.

ArgsGetStatus, ArgsStatusAt — Returns the error status code of a specified
argument in an argument list.

ArgsEqual — Compares two argument lists for equality.

ArgsCombine — Adds two argument lists, resulting in a new argument list that
combines both sets of arguments. When an argument exists in both lists, the val
from the second list is used.

ArgsRemove — Subtracts two argument lists, resulting in a new argument list tha
contains the arguments from the first list that were not in the second list.

ArgsSelect — Returns the intersection of two argument lists, resulting in a new
argument list that contains the arguments that existed in both lists. Each argumen
the value from the first list.

ArgsToString — Converts an argument list to a printable string format.

StringFree — Deletes a pointer to a string returned by ArgsToString and
ObjectIdToString.

AddArgumentByName — Adds an argument to an argument list by specifying a
textual argument name.

AddArgumentByNameValue — Adds an argument to an argument list by specifyin
a textual argument name and value.

ArgsPrint — Prints the text description of an argument list to a file.

CreateChanPerformanceMonitorId — Creates a CVT_ChanPerformanceMonitor
object

CreateObjectTypeId, setObjectType — A series of functions that create an object
identifier of a specified type.

CreateNetworkIdFromString, CreateSwitchIdFromString — Creates an object
identifier of a specified type, based on a text description.

ObjectIdToString — Converts an object identifier to text descriptions.

GetObjectTypeValue, getObjectType — A series of functions that read a specified
value out of an object identifier.

GetNumRetries — Returns the number of retries to check card status preceding
circuit provisioning requests.

ObjectIdToPrint — Prints the text description of an object identifier to a file.

ObjectListAdd — Adds a CvObjectId/CvArgs to an ObjectList.
NavisXtend Provisioning Server User’s Guide 11/24/981-11

Beta Draft Confidential
Overview
Managed Objects

ist.

ed

o
rent

t

ys:

:
ObjectListCombine — Returns the union of two ObjectLists.

ObjectListCount — Retrieves the number of objects in the ObjectList.

ObjectListErrorIndex — Determines if any object in an ObjectList has an error
status.

ObjectListFree — Deletes a pointer to an ObjectList.

ObjectListGetStatus — Retrieves the error status code of an object in an ObjectL

ObjectListIdAt — Retrieves the objectId at a specified position in the ObjectList.

ObjectListMake — Creates an ObjectList.

ObjectListPrint — Prints the contents of CvObjectList to a file.

GetArgumentName — Converts an argument ID to a printable string format.

GetEnumName — Converts an enumerated value to a printable string format.

GetObjectTypeName — Converts an object type to a printable string format.

ParseObjectId — Converts text descriptions of an object to an object identifier.

ParseObjectType — Converts a text description to an object type.

Managed Objects

Managed objects are network components managed on the network. Each manag
object is represented by its object identifier (object ID), which is expressed as a
concatenated, ordered list of type-value identifiers, each separated by periods. T
specify an object ID, you first specify the object’s parent (if any), including the pa
type and value. Then, you specify the child type and value.

For example, an object ID for a PPort would be expressed as:

switch.100.101.102.103.card.6.pport.4

The object is identified by identifying its parent in the containment hierarchy
(switch.100.101.102.103.card.6.), and then identifying the object relative to that paren
(pport.4).

Note that the numbering of an object is not a globally unique ID; rather, it is relative to
the parent object. Thus, this PPort is expressed as the fourth PPort of the card:

. . . pport.4

When you specify a switch parent, you can identify it in either of the following wa

• IP address, using switch as the type and the switch’s IP address as the value
1-1211/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Object Types

 ()
 /”

th /”

.

switch.100.101.102.103.card.6.pport.4

• String name, using swName as the type and the switch’s name as the value:

swName.abcdefg.card.6.pport.4

If the switch string name contains one of the following special characters: ` * ! { }
$ & ; \ | " or blank character, you must enclose at least the special character with
characters:

swName.my/” /”switch.card.6.pport.4

If the switch string name contains a period, you must enclose the entire string wi
characters:

swName./”my.switch/”.card.6.pport.4

You do not need to enclose the following special characters: + = - _ @ # ^ % , : [] / ~

Keep in mind that if a switch name is not unique among networks, a command issued
using the switch string name is executed on the first switch found with that name. To
ensure that the command is executed on a particular switch, identify the object using
the switch’s IP address.

In C, an object is represented as a data structure that is manipulated using utility
functions. In C++, an object is represented by a class that is manipulated using
member functions. For the CLI, an object is represented by string representation

Object Types

Table 1-2 list the object types supported by the Provisioning Server. These object
types are defined in the file CvObjectType.H.

The names of several objects differ from the names used in NavisCore.

Table 1-2. Object Types Supported by the Provisioning Server

Object Name Enumerated Object Type (API) Object Type
(CLI)

Automatic Protection Switching CVT_Aps Aps

Assigned SVC Security Screen CVT_AssignedSvcSecScn AssignedSvcSecScn

Card CVT_Card Card

Card Threshold Crossing Alarm CVT_CardTca CardTca
NavisXtend Provisioning Server User’s Guide 11/24/981-13

Beta Draft Confidential
Overview
Object Types
Channel CVT_Channel Channel

Channel Performance Monitor CVT_ChanPerformanceMonitor PM

Circuit CVT_Circuit Circuit

Customer CVT_Customer Customer

Circuit Defined Path CVT_DefinedPath DefinedPath

Logical Port CVT_LPort Lport

Network Connection Admission
Control

CVT_NetCac NetCac

Network CVT_Network Network

Performance Monitor CVT_PerformanceMonitor PM

Pnni Node CVT_PnniNode PnniNode

Extended Super Frame Data
Link

CVT_PFdl Fdl

PMP Circuit Leaf Endpoint CVT_PMPCkt PMPCktLeaf

PMP Circuit Root Endpoint CVT_PMPCktRoot PMPCktRoot

PMP SPVC Leaf Endpoint CVT_PMPSpvcLeaf PMPSpvcLeaf

PMP SPVC Root Endpoint CVT_PMPSpvcRoot PMPSpvcRoot

Physical Port CVT_PPort Pport

Physical Port Threshold
Crossing Alarm

CVT_PPortTca PportTca

Reference Time Server CVT_RefTimeServer RefTimeServer

Service Name CVT_ServiceName ServiceName

SMDS Address Prefix CVT_SmdsAddressPrefix AddressPrefix

SMDS Alien Group Address CVT_SmdsAlienGroupAddress AlienGroupAddress

SMDS Alien Individual Address CVT_SmdsAlienIndividualAddress AlienIndividualAddress

SMDS Country Code CVT_SmdsCountryCode CountryCode

SMDS Group Screen CVT_SmdsGroupScreen GroupScreen

Table 1-2. Object Types Supported by the Provisioning Server (Continued)

Object Name Enumerated Object Type (API) Object Type
(CLI)
1-1411/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Object Types
SMDS Individual Screen CVT_SmdsIndividualScreen IndividualScreen

SMDS Local Individual Address CVT_SmdsLocalIndividualAddress LocalIndividualAddress

SMDS Netwide Group Address CVT_SmdsNetwideGroupAddress NetwideGroupAddress

SMDS Switch Group Address CVT_SmdsSwitchGroupAddress SwitchGroupAddress

Soft PVC Circuit CVT_Spvc Spvc

SVC Address CVT_SvcAddress SvcAddress

SVC Config CVT_SvcConfig SvcConfig

SVC Close User Group CVT_SvcCUG SvcCUG

SVC Close User Group Member CVT_SvcCUGMbr SvcCUGMbr

SVC Close User Group Member
Rule

CVT_SvcCUGMbrRule SvcCUGMbrRule

SVC NetworkId CVT_SvcNetworkId SvcNetworkId

SVC Node Prefix CVT_SvcNodePrefix SvcNodePrefix

SVC Prefix CVT_SvcPrefix SvcPrefix

SVC Security Screen CVT_SvcSecScn SvcSecScn

SVC Security Screen Action
Parameter

CVT_SvcSecScnActParam SvcSecScnActParam

SVC User Part CVT_SvcUserPart SvcUserPart

Switch CVT_Switch Switch

Traffic Descriptor CVT_TrafficDesc TrafficDesc

Traffic Shaper CVT_TrafficShaper TS

Trunk CVT_Trunk Trunk

VPCI Table CVT_VPCITable VpciTable

Virtual Private Network CVT_VPN Vpn

Table 1-2. Object Types Supported by the Provisioning Server (Continued)

Object Name Enumerated Object Type (API) Object Type
(CLI)
NavisXtend Provisioning Server User’s Guide 11/24/981-15

Beta Draft Confidential
Overview
Containment Hierarchy
Containment Hierarchy

Figure 1-5 shows the containment hierarchy (the parent-child relation) for building
object IDs to name objects in the network.

Keep in mind that network ID is required only when you name an object directly
below network in the containment hierarchy. You can omit the network ID for switch
and objects lower in the hierarchy.

Network

Switch

Card

VPN

SvcSecScn

Service Name

SvcCUGMbrRule SvcCUG

SvcCUGMbr

Customer

Traffic

Descriptor

NetCac

SVC Node

Prefix

SMDS

Country Code

SMDS Netwide

Group Address

SMDS Alien

Individual

Address

SMDS Switch

Group Address

SMDS Address

Prefix

SMDS Alien

Group Address

Figure continues onto next page

Card Threshold

Crossing Alarm

Pnni Node

Reference

Time Server

Trunk
1-1611/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Containment Hierarchy
Figure 1-5. Containment Hierarchy for Managed Objects

PPort

LPort

SMDS Group

Screen

PFdl

Performance

Monitor

APS

ChannelPMP Circuit

Root Endpt

PMP Circuit

Leaf Endpt

PMP Spvc

Root Endpt

PMP Spvc

Leaf Endpt

Circuit

Endpoint

Soft PVC

Circuit

SvcUserPart SVC Address SVC Prefix SVC Config

SMDS Local

Individual

Address

SMDS

Individual

Screen

Assigned

SvcSecScn

SvcSecScn

ActionParam

Figure continued from previous page

PPort Threshold

Crossing Alarm

DefinedPath

SvcNetworkId

VPCITable

Traffic Shaper
NavisXtend Provisioning Server User’s Guide 11/24/981-17

Beta Draft Confidential
Overview
Naming Conventions for Objects
Naming Conventions for Objects

Table 1-3 lists the rules for naming object type-value identifiers.

Table 1-3. Naming Conventions for Object ID

Object Type How Identified

Aps
CardTca
DefinedPath
NetCac
PerformanceMonitor
ChanPerformanceMonitor
PFdl
PPortTca
SMDS group screen
SMDS individual screen
SvcConfig
SvcSecScnActParam

The object is unique to its parent and requires no identifying
value. Identify the object by the type name and the parent.

For example, an SMDS individual screen is expressed as:
switch.100.101.102.103.card.6.pport.4.lport.2.individualscreen

AssignedSvcSecScn
Customer
PnniNode
SvcCUG
SvcCUGMbr
SvcCUGMbrRule
SvcSecScn
ServiceName
TrafficDesc
Trunk
VPN

By a string name.

For PnniNode, the object is identified by a string consisting of a
Peer Group Level and a Peer Group ID, separated by a dash (-).
The Peer Group Level value is a decimal number representing the
number of bits allowed in the Peer Group ID field (range 0 - 104).
The Peer Group ID value is a hexidecimal number (range 0-104
bits); the number depends upon the Peer Group Level. For
example, a PnniNode is expressed as:
switch.100.101.102.103.pnninode.45-01234567890abcdef. . .

where 45 is the number of bits allowed and 01234567890abcdef is
the Peer Group ID. The number of bits specified in the Peer
Group ID can be less than Peer Group Level, but not more.

For SvcCUGMbr, the object is identified by two names: the CUG
name and the member name.
1-1811/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Naming Conventions for Objects
Card
LPort
PMPSpvcLeaf
PPort
TrafficShaper

By relative number. For example, the fourth PPort on a card is
identified as: switch.100.101.102.103.card.6.pport.4

For PMPSpvcLeaf objects, specify the Root parent. The first
PMPSpvcLeaf is identified as:
switch.100.101.102.103.card.6.pport.4.lport.1.PMPSpvcRoot.vpi.
5[.vci.43].PMPspvcleaf.1

Use the relative numbering scheme to identify LPorts; do not use
the LPort Interface Number displayed in the NavisCore screens.

ATM Transport for FR NNI LPorts are identified with VPI and
VCI numbers.

ATM Virtual UNI LPorts are identified with the VPI start value.

MLFRBundleLPorts are created on the card, not a specific PPort.
Thus, they are identified as:
switch.100.101.102.103.card.6.lport.1

MLFRMemberLPorts are created on the PPort. Thus, they are
identified as: switch.100.101.102.103.card.6.pport.4.lport.1

Channel By a number in the range of 1 - 28. The channel object applies
only to channelized cards. For example, a Frame Relay circuit on
a channelized DS3 card is identified as:
switch.100.101.102.103.card.6.pport.4.channel.25.lport.1.dlci.55

Circuit By the number(s) of its first endpoint. An endpoint can be an
LPort or a Service Name; the object ID representation differs
accordingly.

In the case of LPorts, either endpoint can be a Frame Relay or an
ATM endpoint. For Frame Relay endpoints, use the DLCI
number. For ATM endpoints, use both the VPI and VCI values.
For ATM Network Interworking for Frame Relay NNI endpoints,
include the VPI, VCI, and DLCI numbers. For example, a Frame
Relay endpoint is expressed as:
switch.100.101.102.103.card.6.pport.4.lport.2.dlci.55

An ATM endpoint is expressed as:
switch.100.101.102.103.card.6.pport.4.lport.2.vpi.8.vci.65

In the case of ServiceName, the endpoint is identified by the
network number, the name of the ServiceName binding, and the
VPI/VCI pair or DLCI number (depending on endpoint type).

For example, a ServiceName endpoint is represented as either:

network.154.188.0.0.ServiceName.xxx.vpi.14.vci.128

network.154.188.0.0.ServiceName.xxx.dlci.55

where xxx is the name of the ServiceName binding.

Table 1-3. Naming Conventions for Object ID (Continued)

Object Type How Identified
NavisXtend Provisioning Server User’s Guide 11/24/981-19

Beta Draft Confidential
Overview
Descriptions of Object Types
Descriptions of Object Types

The following sections describe the object types, including the kinds of management
operations that you can perform on an object and any operating restrictions. The
objects types are listed alphabetically.

Network By an IP address with the last 2 bytes set to 0 (Class B addresses)
or the last 1 byte set to 0 (Class C addresses). This object type is
used to specify a root when you issue a command to list objects
contained by a specific parent.

PMPCkt
PMPCktRoot
PMPSpvcRoot
Spvc

By the VPI and VCI values of its endpoint.

A PMPSpvcRoot endpoint is expressed as:
switch.100.101.102.103.card.6.pport.4.lport.2.PMPSpvcRoot.vpi.
8[.vci.65]

SMDS address prefix By an E.164 address string (3 to 6 characters).

SMDS country code By an E.164 address string (up to 4 characters).

SMDS alien group address
SMDS alien individual address
SMDS local individual address
SMDS netwide group address
SMDS switch group address

By an E.164 address string (10 to 16 characters).

SvcAddress
SvcNodePrefix
SvcPrefix
SvcNetworkId
SvcUserPart

By a string that conforms to the convention used to specify
addresses. For more information, see “SVC Addressing” on
page 1-44.

RefTimeServer By an IP address of the parent switch and IP address of the
reference time server.

For example, a Reference Time Server is expressed as:
switch.100.101.102.103.RefTimeServer.200.201.202.203

Switch By an IP address or by a string name.

VpciTable By a number in the range of 0 - 65535.

Table 1-3. Naming Conventions for Object ID (Continued)

Object Type How Identified

See the NavisXtend Provisioning Server Software Release Notice for this release
for information about the object types supported by Provisioning Server on the
GX 550 switch.
1-2011/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Descriptions of Object Types

es,
e

, or
CVT_Aps

Automatic Protection Switching (APS) protects SONET media from line outages.
Currently, APS support is provided for 1-port OC-12c/STM-4 and 4-port
OC-3c/STM-1 cards on CBX 500™ switches. When the attribute
CVA_PPortRedundancy is set to Aps1+1, the protection port forms a pair with the
existing PPort on the card.

You can only modify APS objects; the Provisioning Server does not support adding or
deleting them. Depending on whether the PPort is the working PPort or the protection
line, you can configure a list of PPort and APS parameters. The attribute
CVA_ApsApsCommand is supported for the APS PPort pair for sending external
switch requests.

CVT_AssignedSvcSecScn

AssignedSvcSecScn specifies the association between an LPort and an SVC security
screen. When you add or delete an object of this type, you are actually adding or
removing screens from the parent LPort. This object exists only on ATM UNI/NNI
LPorts configured on a CBX 500 switch. A limit of 16 screens can be added to one
LPort.

CVT_Card

The NavisCore database automatically populates each switch with cards of type
“empty”. To add a card, use the Modify command to change the card’s type from
“empty” to a specified type. Specify the appropriate card type using the attribute
CVA_CardDefinedType.

The attributes CVA_CardUioDefinedXface, CVA_CardDsx1DefinedXface, and
CVA_CardE1DefinedXface provide subtypes for the UIO, Dsx1, and E1 card typ
respectively. If you modify a card to one of these card types and do not specify th
appropriate subtype, the card defaults to uioXfaceTypeV35, dsx1XfaceTypeRj48
e1XfaceTypeCoaxPair75Ohm, respectively.

To delete a card, use the Modify command to change the card’s type to “empty”.

If you modify a card to a type that does not match the actual card type, the
Provisioning Server does not inform you about the type mismatch.

CVT_CardTca

The CardTca object controls card threshold crossing alarm configuration.
NavisXtend Provisioning Server User’s Guide 11/24/981-21

Beta Draft Confidential
Overview
Descriptions of Object Types

ill

annel

elay

es the
g
CVT_ChanPerformanceMonitor

This object supports the 1-port Channelized DS3-1-0 card. The object identifies the
DS1 channel PM Threshold object. It is similar to the existing
CVT_PerformanceMonitor object type, but contains a channel identifier.

There are two levels of PM Threshold configuration on the Channelized DS3-1-0
card. PM Threshold can be configured on the PPort level and on the channel level.

The DS3 PM Threshold object has the PPort as its parent. However, similar to the
LPort’s dual parent identities to accommodate channels, PM threshold objects w
have similar OID on this card.

The DS3 PM Threshold object is unique to its parent PPort, and requires no
identifying value.

• cvlistcontained switch.1.1.1.1.card.2.pport.3 pm

This command returns the attributes configurable for the DS3 PM Threshold
object on PPort 3.

• cvmodify switch.1.1.1.1.card.2.pport.3.pm -DS3 PM Threshold attributes.

This command modifies the configurable attributes of the DS3 PM Threshold
object on the PPort.

The DS1 PM Threshold object is unique to its parent channel, and requires no
identifying value.

• cvlistcontained switch.1.1.1.1.card.2.pport.3.channel.4 pm

This command returns the attributes configurable for the DS1 PM Threshold
object on channel 4.

• cvmodify switch.1.1.1.1.card.2.pport.3.channel.4.pm -DS1 PM Threshold
attributes.

This command modifies the DS1 PM threshold attributes on channel 4.

CVT_Channel

The channel object applies only to channelized cards. Requests that specify a ch
and are sent to an object other than the channelized card return an error.

A channel is identified by a number in the range of 1 - 28. For example, a Frame R
circuit on a channelized DS3 card is represented as:

switch.100.101.102.103.card.6.pport.4.channel.25.lport.1.dlci.55

Once a channelized card has been configured, NavisCore automatically populat
card with all necessary channels. You can only modify channels; the Provisionin
Server does not support adding or deleting channels.
1-2211/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Descriptions of Object Types

es for

ce

:

ard 6,
ort

ts

ed as

int.

r GX
The CVT_Channel object supports the following diagnostic operations: startDiag,
getDiag, updateDiag, and stopDiag. These operations enable you to retrieve
diagnostic information such as loopbackstatus and errorcount, and change diagnostic
parameters such as injecterror and clearcounter. See Chapter 2, “Object Attribut
APS Through LPort,” in NavisXtend Provisioning Server Object Attributes
Definitions for descriptions of the diagnostic attributes.

CVT_Circuit

A circuit is identified by its first endpoint. An endpoint can be an LPort or a Servi
Name; the object ID representation differs accordingly.

In the case of LPorts, either endpoint can be a Frame Relay or an ATM endpoint

• For Frame Relay endpoints, use the DLCI endpoint.

• For ATM endpoints, include both the VPI and VCI values.

• For ATM Network Interworking for Frame Relay NNI endpoints, include the
DLCI numbers.

• For ATM Virtual UNI endpoints, use the start VPI value.

Specify a circuit’s second endpoint with the attribute CVA_CircuitEndpoint2.

For example, the Frame Relay endpoint that connects switch 100.101.102.103, c
PPort 4, LPort 2, DLCI 55 with ATM endpoint 154.188.162.44, card 3, PPort 5, LP
11, VPI 8, VCI 65 is represented as either:

switch.100.101.102.103.card.6.pport.4.lport.2.dlci.55

switch.154.188.162.44.card.3.pport.5.lport.11.vpi.8.vci.65

The Provisioning Server supports VPI values of 0-15 for ATM circuit endpoints.

If an endpoint of a circuit is defined on a channelized DS3 card, the circuit is
identified by the channel ID. For example, the Frame Relay endpoint that connec
switch 100.101.102.103, card 6, PPort 4, channel 25, LPort 1, DLCI 55 with ATM
endpoint 128.129.130.131, card 1, PPort 2, LPort 3, VPI 14, VCI 128 is represent
either:

switch.100.101.102.103.card.6.pport.4.channel.25.lport.1.dlci.55

switch.128.129.130.131.card.1.pport.2.lport.3.vpi.14.vci.128

When you add a circuit of type VPC, you do not provide the VCI part of the endpo
For example, the endpoint for a VPC circuit is represented as:

switch.100.101.102.103.card.6.pport.4.channel.25.lport.1.vpi.14

In this case, the second endpoint must also be an ATM Cell endpoint on a CBX o
switch, as VPC circuits only support ATM endpoints.
NavisXtend Provisioning Server User’s Guide 11/24/981-23

Beta Draft Confidential
Overview
Descriptions of Object Types

ostic
es for

ch
PN

to be
runks

 is
.0.1
.1 in
In the case of ServiceName, the endpoint is identified by the network number, the
name of the ServiceName binding, and the VPI/VCI pair or DLCI number (depending
on endpoint type). Specify the second endpoint with the attribute
CVA_CircuitEndpoint2.

For example, a ServiceName endpoint is represented as either:

network.154.188.0.0.ServiceName.xxx.vpi.14.vci.128

network.154.188.0.0.ServiceName.xxx.dlci.55

where xxx is the name of the ServiceName binding.

For details on how the Provisioning Server ensures reliability and accuracy of circuit
provisioning, see “Circuit Provisioning” on page 1-41.

The CVT_Circuit object supports the following diagnostic operations: startDiag,
getDiag, updateDiag, and stopDiag. These operations enable you to retrieve
diagnostic information such as loopbackstatus and errorcount, and change diagn
parameters such as injecterror and clearcounter. See Chapter 2, “Object Attribut
APS Through LPort,” in NavisXtend Provisioning Server Object Attributes
Definitions for descriptions of the diagnostic attributes.

CVT_Customer

Customer objects are associated with VPN objects (Virtual Private Networks). Ea
customer object contains information that identifies both the customer and the V
with which the customer is associated. The attribute CVA_CustomerVpnName
associates the Customer object with a particular VPN.

The attribute CVA_LPortCustomerName specifies a customer name to which the
LPort belongs.

CVT_DefinedPath

The DefinedPath object allows you to specify an exact path to be used when
forwarding traffic over a circuit. The DefinedPath consists of a sequence of hops
used to connect two circuit endpoints. DefinedPath hops are specified as either t
or nodes. In the case of nodes, any trunk connecting the nodes can be used.

For example, consider a network consisting of four nodes and six trunks. A PVC
already defined (without a corresponding DefinedPath) between Switch.152.150
and Switch.152.150.0.4. Switch.152.150.0.4 is reachable from Switch.152.150.0
three hops.
1-2411/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Descriptions of Object Types

 of
n

ue an

th

ber
ntify

1
By convention, defined paths are specified from the node with the larger IP address to
the node with the smaller IP address. The first hop of the path attribute specified that
Trunk.T6 should be used to reach the first hop node from Switch.152.150.0.4. The
second hop attribute specifies that switch.152.150.0.2 is the second hop and that any
trunk connection between switch.152.150.0.2 and switch.152.150.0.3 can be used to
reach it.

The third hop attribute is the same as the first. Trunk.T1 should be used from
switch.152.150.0.2 to reach the switch.152.150.0.1 and complete the defined path of
the circuit.

To specify this path through the CLI, set the pathlist attribute as follows:

switch.1.1.1.1.card.4.pport.5.lport.1.dlci.16

-pathlist network.152.150.0.0.trunk.T6

switch/152.150.0.2

network.152.150.0.0.trunk.T1 -endlist

CVT_LPort

LPorts have different subtypes: Frame Relay, SMDS, ATM, and Other. When you
issue a command, specify only those attributes that are appropriate for the particular
LPort’s subtype. See the NavisXtend Provisioning Server Object Attribute Definitions
for the attributes that pertain to each object type and subtype.

For SMDS objects, you can set the CVA_LPortSsiLPort attribute to the object ID
an SMDS SSI DTE LPort. Or, to de-multiplex the LPort, you set the attribute to a
object ID of type CVT_Null (use -nullObject in the CLI).

On a channelized DS3 card, an LPort is a child of a channel. Thus, when you iss
Add command, you must specify the channel parent.

For ATM Virtual UNI LPorts on the CBX 500 switch, first create a feeder LPort wi
ATM UNI type. Since the LPort number of a virtual UNI LPort is generated
automatically from the combination of its VPI start number and the Interface Num
(which is also generated automatically), you can use the VPI start number to ide
the LPort. For example, a Virtual UNI LPort with the start VPI number set to 1 is
represented as:

switch.128.129.130.131.card.1.pport.2.startvpi.1

ATM Network Interworking for Frame Relay NNI LPorts require a different object
identifier. This LPort type is identified by VPI/VCI pair.

For example, an ATM Network Interworking for Frame Relay NNI LPort with VPI
and VCI 32 is represented as:

switch.100.101.102.103.card.6.pport.4.vpi.1.vci.32
NavisXtend Provisioning Server User’s Guide 11/24/981-25

Beta Draft Confidential
Overview
Descriptions of Object Types

es for

ts. It
 The
MLFRBundle LPorts are identified by card, not by PPort. MLFRMember LPorts are
identified by parent PPort. The MLFRMember LPorts are bound to a particular
MLFRBundle LPort on the same card, which can be used as an endpoint for trunk
creation. The bandwidth of the MLFRBundle LPort is the aggregate of its
MLFRMember LPorts. A maximum of 16 MLFRMembers can be bound to a
MLFRBundle LPort.

The CVT_LPort object supports the following diagnostic operations: startDiag,
getDiag, updateDiag, and stopDiag. These operations enable you to retrieve
diagnostic information such as loopbackstatus and errorcount, and change diagnostic
parameters such as injecterror and clearcounter. See Chapter 2, “Object Attribut
APS Through LPort,” in NavisXtend Provisioning Server Object Attributes
Definitions for descriptions of the diagnostic attributes.

CVT_MLFRBinding

The MultiLink Frame-Relay (MLFR) Binding object is an internal object that the
Provisioning Server uses to associate the MLFRBundle and MLFRMember LPor
is not possible to create, modify, or delete this object through any user interface.
MLFRBundle and MLFRMember LPorts are objects of type CVT_LPort. CLI
commands cvaddmember and cvdeletemember bind and unbind an MLFRMember
LPort to an MLFRBundle LPort. See the descriptions for cvaddmember and
cvdeletemember in Chapter 3, “Using the CLI.” Also, for more information about
MLFRBundle and MLFRMember LPorts, see the description of the CVT_LPort
object in this section.

CVT_NetCac

Network Connection Admission Control (NetCAC) allows you to compute the
bandwidth allocation for any virtual circuit. The NetCac object exists under the
Network object. This object is supported only for CBX 500 and B-STDX™ 9000
switches. If the attribute CVA_NetCacCacType is set to Cascade, then only Cell Loss
Ratio and Cell Delay Variation parameters are configurable. For Customized CAC
configuration, you must supply Port Scale Factors and SCR Limit Scale Factors.

In the case of Customized CAC, you must supply the three SCR Limit Scale Factors
of Upper Limit, Scale Factor, and Maximum MBS values together. You can supply a
maximum of 10 sets. No default values apply and no upper boundary checks are
performed for any of these scale factor values.

CVT_Network

Use this object type to specify a root when you issue a command to list objects
contained by a specific parent.
1-2611/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Descriptions of Object Types

ify.

ith all
, the

does

nd
 Leaf
nd
 are
ct as
ex.
CVT_PerformanceMonitor

This object supports the CURRENT (15-minute) and the ONE-DAY threshold
parameters for the following cards:

• 8-port T1/E1

• 8-port DS3/E3

• 1-port OC12

• 4-port OC3 cards

• 4-port 24-channel Fractional T1

• 1-port Atm Iwu Oc3

• 1-port Atm CsDs3

• 1-port 28-channel Ds3

Default values are set at the time of card configuration, which you can then mod

CVT_PFdl

Once a card has been configured, NavisCore automatically populates the card w
necessary Physical Ports. In the case of the ATM-T1 card on the CBX 500 switch
NavisCore database automatically populates the Extended Super Frame object.

You can only modify the Extended Super Frame object; the Provisioning Server
not support adding or deleting it.

CVT_PMPCkt

A Point-to-MultiPoint (PMP) circuit consists of one endpoint acting as the Root a
the other endpoints acting as Leaves. Use this object to add PMP Leaves. A PMP
can be added, modified, and deleted. This object type applies only to CBX 500 a
GX switches. Since only ATM endpoints are supported, only VPI and VCI values
supported. To add a leaf using the CLI or the API, you must specify the Root obje
one of the attributes. To add a leaf using the MIB, you specify the Root as an ind
NavisXtend Provisioning Server User’s Guide 11/24/981-27

Beta Draft Confidential
Overview
Descriptions of Object Types
CVT_PMPCktRoot

A Point-to-MultiPoint (PMP) circuit consists of one endpoint acting as the Root and
the other endpoints acting as Leaves. PMP Root can be added or deleted. This object
type applies only to CBX 500 and GX switches. Since only ATM endpoints are
supported, only VPI and VCI values are supported. To add a PMP Circuit using the
CLI or the API, add the Root and the Leaves separately. Root attributes are
Create-Only attributes.

CVT_PMPSpvcLeaf

Use this object type to add the Point-to-MultiPoint (PMP) SPVC Leaf.

For PMPSpvcLeaf objects, specify the Root parent as part of the object ID
representation. For example:

switch.100.101.102.103.card.6.pport.4.lport.1.PMPSpvcRoot.vpi.5[.vci.43].PMPspvcleaf.1

For the CLI or the API, you no longer need to specify the Root object as one of the
attributes.

To add a leaf using the MIB, you specify the Root as an index.

You must specify the correct instance number when you perform an add, get, modify,
or delete operation. To retrieve the correct instance number from the database, use the
attribute CVA_PMPSpvcRootNextAvailableLeafNo.

CVT_PMPSpvcRoot

This object type is similar to CVT_Spvc, but is used to add a Point-to-MultiPoint
(PMP) SPVC root. This object type applies only to CBX 500 and GX switches. You
can add, modify, and delete this object type.

When you add the Root, the first leaf is automatically added. To modify the first leaf,
use the object type CVT_PMPSpvcLeaf.

CVT_PnniNode

The PnniNode object is an ATM routing and signalling protocol designed for
dynamically routing scalable, QoS-enabled, bandwidth adaptive, ATM switched
virtual circuits (SVCs). The PnniNode object specifies which Peer Group ID that the
node uses when communicating with the PNNI neighbor nodes.

The Root parent specification does not include the vci value if the Root is a
permanent virtual circuit (PVC) Spvc.
1-2811/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Descriptions of Object Types

es for

 time

 a
 the
 To
witch

ary

ing

e

s all
efore
CVT_PPort

Once a card has been configured, NavisCore automatically populates the card with all
necessary Physical Ports. You can only modify PPorts; the Provisioning Server does
not support adding or deleting PPorts.

The CVT_PPort object supports the following diagnostic operations: startDiag,
getDiag, updateDiag, and stopDiag. These operations enable you to retrieve
diagnostic information such as loopbackstatus and errorcount, and change diagnostic
parameters such as injecterror and clearcounter. See Chapter 2, “Object Attribut
APS Through LPort,” in NavisXtend Provisioning Server Object Attributes
Definitions for descriptions of the diagnostic attributes.

CVT_PPortTca

The PPortTca object controls PPort threshold crossing alarm configuration.

CVT_RefTimeServer

The Reference Time Server object synchronizes time between an NTP reference
server and a switch.

CVT_ServiceName

ServiceName binding support allows you to identify a primary port (UNI/NNI) with
name so that a circuit can identify its service endpoint by this name instead of by
LPort name. The primary LPort can be a Frame Relay or an ATM UNI/NNI LPort.
associate a backup binding with the primary service name binding, associate a s
port to act as a backup LPort.

When creating a service name binding, specify only the primary LPort. This prim
binding cannot be modified.

To set up or modify a backup binding, modify the ServiceName object by specify
the backup LPort. The attribute CVA_ServiceNameActiveBinding indicates the
current status of binding. To revert from backup binding to primary binding, set th
attribute CVA_ServiceNameActiveBinding to Primary in the modify request.

CVT_SmdsAddressPrefix

An SMDS address prefix is created on a switch to indicate that the switch handle
E.164 addresses that begin with that prefix. You must create an address prefix b
you can create an SMDS local individual address that uses that prefix.
NavisXtend Provisioning Server User’s Guide 11/24/981-29

Beta Draft Confidential
Overview
Descriptions of Object Types

 you

bject
ist on

fore

he

ble

You can create an address prefix at any time. You can delete an address prefix only if
it is not referenced by any SMDS local individual address. No attributes apply to
address prefixes.

CVT_SmdsAlienGroupAddress

Objects of this type are used only as members of a group screen. Use this object type
to add a group address to an SMDS group screen, if the group address does not exist
on the switch as a switch group address (see “CVT_SmdsSwitchGroupAddress” on
page1-32). In this case, you must first create an SMDS alien group address before
can add the group address to the SMDS group screen. To do so, issue an Add
command with no arguments. Then, issue the Add Member command to add the
address to the group screen.

CVT_SmdsAlienIndividualAddress

Objects of this type are used only as members of an individual screen. Use this o
type to add an address to an SMDS individual screen, if the address does not ex
the switch as a local individual address (see “CVT_SmdsLocalIndividualAddress” on
page1-31). In this case, you must first create an SMDS alien individual address be
you can add the address to the SMDS individual screen. To do so, issue an Add
command with no arguments. Then, issue the Add Member command to add the
address to the individual screen.

CVT_SmdsCountryCode

Specify this object on the network level using up to 3 digits in E.164 format. To use a
country code in an SMDS local individual address, include a dash (-) between t
country code and the prefix (for example: 1-9789521111). If you omit the country
code, the server uses the default country code specified in the environment varia
CV_DFLT_SMDS_CC (for details, see “Setting Environment Variables” on
page2-11).

The Add command can fail or cause problems in the switch if the alien
individual address uses a prefix that is assigned to the switch. By definition, an
alien individual address should use a prefix not currently defined anywhere in
the network.
1-3011/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Descriptions of Object Types

ntil

You
DS

t. You

 of
ess
t.
ress
CVT_SmdsGroupScreen

There is only one group screen per SMDS LPort, and you must explicitly create it.
Create the group screen before you add addresses to it. Once you create the group
screen, you can add switch group addresses or alien group addresses as members.
When you create a netwide group address, a switch group address is created
automatically.

You can use an SMDS screen to either allow or disallow specific addresses for an
LPort. Use the attribute CVA_GroupScreenOperation to do so.

CVT_SmdsIndividualScreen

There is only one individual screen per SMDS LPort, and you must explicitly create it.
Create an individual screen before you add addresses to it. Once you create the
individual screen, you can add addresses or alien addresses as members.

An SMDS screen can be used to allow or disallow specific addresses for the LPort.
Use the CVA_IndividualScreenOperation attribute to do so.

CVT_SmdsLocalIndividualAddress

In NavisCore, an SMDS local individual address is known as an individual address.
You create this object on an LPort to associate that address with the LPort. The
address must use a prefix that has already been created on that switch. You can also
use an existing country code specified in the network (see “CVT_SmdsCountryCode”
on page 1-30) as part of the local individual address. You cannot delete an LPort u
you have deleted all its local individual addresses.

CVT_SmdsNetwideGroupAddress

A netwide group address is a collection of SMDS switch group address objects.
create and manage group addresses through these objects and not through SM
switch group address objects. You must create a netwide group address in the
appropriate subnetwork before you can add members (individual addresses) to i
must also use the Delete Member command to remove all of the netwide group
address members before you can delete the netwide group address itself.

CVT_SmdsSSIIndividualAddress

This object is obsolete, but is maintained for compatibility with previous versions
the Provisioning Server. The SniDxi LPort does not have to subscribe to an addr
from an SSI LPort’s address pool even if the LPort is multiplexed to an SSI LPor
You can perform any SMDS configuration without creating the SSI individual add
pool.
NavisXtend Provisioning Server User’s Guide 11/24/981-31

Beta Draft Confidential
Overview
Descriptions of Object Types

CVT_SmdsSwitchGroupAddress

An SMDS switch group address does not appear in NavisCore. This object represents
a group address that is local to a switch. A switch group address with a given address
should exist on a switch only if the equivalent netwide group address has members on
that switch; it lists the addresses of that switch that are members of the equivalent
netwide group address. The only time you should need to reference a group address
directly is to add one to a group screen.

You should not have to create or delete objects of this type; they are created and
deleted automatically during the management of SMDS netwide group addresses.
However, since you cannot delete a netwide group address if it contains any group
address members, in rare cases, you may need to delete a group address manually.
You cannot delete a group address until it no longer contains individual address
members.

CVT_Spvc

Soft PVC circuits are identified by an endpoint at one end and the SVC Address at the
other end. The other endpoint may not necessarily exist in the same network. You can
add, modify, and delete this object. This object type applies only to CBX 500 and GX
switches. Since only ATM endpoints are supported, only VPI and VCI values are
supported. Specify the SVC Address using attributes.

CVT_SvcAddress

SvcAddress provides an interface to set up full ATM addresses (20 octets) on an
LPort. This address is associated with the following LPort types located on CBX 500
switches:

• atmUniDte

• atmUniDce

• atmNni

Frame Relay addresses are associated with the following LPort types located on
B-STDX 8000 and 9000 switches:

• frUniDte

• frUniDce

There can be zero or more SvcAddresses configured per LPort.

An ATM Address can be one of the following format types:

• E.164native
1-3211/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Descriptions of Object Types

ver

a
on.

t

 the

G
ct
n
• AESA addresses:

– E.164AESA

– DCCAESA

– ICDAESA

– CustomAESA

– DCCAnycastAESA

– ICDAnycastAESA

– E.164AnycastAESA

For AESA addresses, if the address prefix is 39 characters, the Provisioning Ser
appends a zero to the address to make it 20 octets.

For Frame Relay SVCs, E.164native and X.121 are valid formats.

For information on the convention used to specify SVC addresses, see “SVC
Addressing” on page 1-44.

CVT_SvcConfig

Use this object to configure an LPort for switched virtual circuits.

Only one SvcConfig object is associated with an LPort. An LPort is created with
default SvcConfig; you can only modify this object to change an SVC configurati
The SvcConfig is deleted when its LPort is deleted.

CVT_SvcCUG

Use this object to configure SVC Closed User Groups. You can create this objec
under the Network object. Each SVC Closed User Group can contain up to 128
members. You cannot perform a database-only modification on this object, since
modification has to be distributed throughout the network.

CVT_SvcCUGMbr

Use this object to create the association of an SvcCUG object and an
SvcCUGMbrRule. Deleting this type of object disassociates the specified SvcCU
with the SvcCUGMbrRule. Adding, modifying, and deleting an SvcCUGMbr obje
requires network distribution; you cannot perform a database-only modification o
this object.
NavisXtend Provisioning Server User’s Guide 11/24/981-33

Beta Draft Confidential
Overview
Descriptions of Object Types

x is

oses
h is
ess
ts of
CVT_SvcCUGMbrRule

During creation of this object, a distribution list is created by matching its rule to ATM
SVC prefixes, addresses, and user parts configured on nodes in the network. Adding,
modifying, and deleting an SvcCUGMbrRule object requires network distribution;
you cannot perform a database-only modification on this object.

CVT_SvcNetworkId

This object provides an interface to add SVC Network IDs to an LPort. A NetworkID
object can be configured only on the following types of LPorts:

• atmUniDte

• atmUniDce

• atmNni

• frUniDte

• frUniDce

Valid address format types for this object are:

• Carrier ID Code (CIC)

The address prefix can be from 1 to 8 characters long. The nBits value is
calculated as the string length of the address prefix * 8.

• Data Network ID Code (DNIC)

Only the frUniDte and frUniDce LPorts support this format. The address prefi
4 characters long. Thus, the calculated nBits value is always 32.

Setting the nBits value is optional. If you set an incorrect value, the Provisioning
Server returns an error.

CVT_SvcNodePrefix

This object provides an interface to add node prefixes on a switch. The switch imp
no constraints on the node prefixes except to enforce the maximum length (whic
the same as a full address length — 20 octets). For AESA addresses, if the addr
prefix is an odd number of characters, the Provisioning Server stuffs the last 4 bi
the last octet with zeros, thereby appending a zero to the address prefix.
1-3411/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Descriptions of Object Types

he
sses

 on

th
ted to
The valid address format types for ATM SVCs are the same as described for the
CVT_SvcAddress object (see “CVT_SvcAddress” on page 1-32). For Frame Relay
SVCs, E.164native and X.121 are valid formats. There can be zero or more
SvcNodePrefixes configured per switch.

For information on the convention used to specify SVC addresses, see “SVC
Addressing” on page 1-44.

CVT_SvcPrefix

This object provides an interface to set up prefixes on an LPort. Prefix is one of t
three classes of static addressing used for switched virtual circuits. The other cla
are full ATM Address and Node Prefix.

Prefix is associated with the following LPort types located on CBX 500 switches:

• atmUniDte

• atmUniDce

• atmNni

Frame Relay SVC prefixes are associated with the following LPort types located
B-STDX 8000 and 9000 switches:

• frUniDte

• frUniDce

There can be zero or more SvcPrefixes configured per LPort.

An ATM Address prefix can be of the following format types:

• E.164native

• AESA addresses:

– E.164AESA

– DCCAESA

– ICDAESA

– CustomAESA

– DCCAnycastAESA

– ICDAnycastAESA

– E.164AnycastAESA

• DefaultRoute: Use this format to configure the port with an ATM address leng
of zero bits. This enables this port to receive messages that could not be rou
other ports because of ATM address mismatch.
NavisXtend Provisioning Server User’s Guide 11/24/981-35

Beta Draft Confidential
Overview
Descriptions of Object Types

Scn
ork

with
h.

used
ts, of
ts 1

d by

 side
I.

 use
For Frame Relay SVCs, E.164native, DefaultRoute, and X.121 are valid formats.

For AESA addresses, if the address prefix is an odd number of characters, the
Provisioning Server stuffs the last 4 bits of the last octet with zeros, thereby appending
a zero to the address prefix.

For information on the convention used to specify SVC addresses, see “SVC
Addressing” on page 1-44.

CVT_SvcSecScn

This object exists on the network level. Its name is used by the AssignedSvcSec
object to apply screening to an LPort. Modify and delete operations require netw
wide distribution; you cannot perform database-only modification on this object.

CVT_SvcSecScnActParam

This object exists under the LPort object and is populated/deleted automatically
LPort creation. One instance exists for each ATM UNI LPort on a CBX 500 switc

CVT_SvcUserPart

Use this object to set up the user part on a DTE LPort on a CBX 500 switch. It is
for dynamic address registration at a UNI. The user part address length is 7 octe
which End System Identifier (ESI) represents 6 octets and the selector represen
octet. The user part represents a partial SVC address associated with ATM DTE
LPorts on the node. The rest of the address is the network prefix, which is supplie
the network side of the UNI. To obtain an ATM address for a terminal on the user
of a Private UNI, append values for the user part to network prefix(es) for that UN

You can create UserParts (zero or more) only on ATM DTE LPorts.

For information on the convention used to specify SVC addresses, see “SVC
Addressing” on page 1-44.

CVT_Switch

The Provisioning Server does not support adding or deleting switches; you must
NavisCore to do so. For an existing switch, you can read or modify any switch
attribute except for the CVA_SwitchName attribute, which is Read-Only.
1-3611/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Descriptions of Object Types

ic
e

the
the

lid
CVT_TrafficDesc

The Provisioning Server provides support for maintaining a pool of ATM traffic
descriptors. The traffic descriptors are required for setting up forward and backward
traffic descriptors for Soft PVCs. Each traffic descriptor is identified by a name. An
ID is automatically associated with each name.

Depending on the Quality of Service (QoS) class you select and the Type of Service
associated with it, you need to provide the PCR, SCR, and MBS values. Do so using
the attributes CVA_TrafficDescParam1, CVA_TrafficDescParam2, and
CVA_TrafficDescParam3. Only add and delete operations are supported for ATM
traffic descriptors.

CVT_TrafficShaper

Traffic shaper objects are located under PPort in the containment hierarchy. Only
PPorts on the following cards can have traffic shaper objects:

• 1-port ATM IWU OC3 card

• 1-port ATM CS/DS3 card

• 1-port ATM CS/E3 card

A traffic shaper object is not an independent object. It represents a group of traff
shaper attributes under a particular PPort type. All the traffic shaper attributes ar
essentially the attributes for the belonging PPort. The traffic shaper attributes are
treated as a separate object to provide a clear user interface for the attributes.

Once a PPort is created through NavisCore, NavisCore automatically populates
PPort with traffic shaper attributes. You can only modify traffic shaper attributes;
Provisioning Server does not support creating them.

When you issue a ListContained command on a traffic shaper object, the only va
parent object type is PPort.
NavisXtend Provisioning Server User’s Guide 11/24/981-37

Beta Draft Confidential
Overview
Descriptions of Object Types

 /”
CVT_Trunk

A trunk object allows two switches to pass data to each other. A Direct Line trunk
connects two switches directly. An OPTimum trunk connects two switches via a
public data network.

You can use the Provisioning Server to add a trunk. However, if you want NavisCore
map to show the trunk connection between the switches, you must use NavisCore to
add the connection to the map.

You specify a trunk by its name:

Trunk.NYLA

If the trunk string name contains one of the following special characters: ‘ * ! { } () $
& ; \ | " or blank character, you must enclose at least the special character with /”
characters:

TrunkName.Boston/”&/”NY

If the trunk string name contains a period, you must enclose the entire string with
characters:

TrunkName./”Boston.NY/”

You do not need to enclose the following special characters: + = - _ @ # ^ % , : [] / ~

CVT_VPCITable

The VPCI table object maps a particular PSA VPCI to a PSC VPI when proxy
signaling is in use. When proxy signaling is not in use, the VPCI table augments the
currently-available VPCI to VCI mapping mechanism by allowing you to customize
the mapping. For the VPCI table to work properly, both the Proxy Signaling Agent
and all Proxy Signaling Clients must use the same type of VPCI to VPI mapping.

CVT_VPN

Creation and deletion of VPN objects occur at the network level. Use the attribute
CVA_LPortVPNName to specify the VPN to which an LPort belongs. Setting
CVA_LPortVPNName to Public makes that LPort a normal public LPort. Similarly,
use the attribute CVA_CircuitVPNName to specify the VPN to which a circuit
belongs. Both end points of a circuit may not belong to different VPNs.
1-3811/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Valid Object Types for Operational Functions
Valid Object Types for Operational Functions

Table 1-4 lists the object types you can use when you issue the operational functions
and commands of the API and CLI.

Table 1-4. Valid Object Types for Operational Functions

Object Type Add
Object

Add
Member

Delete
Object

Delete
Member

Get List
All

List Modify Diag Get
Oper
Info

APS ✓ ✓ ✓

AssignedSvcSecScn ✓ ✓ ✓ ✓ ✓ ✓

Card ✓ ✓ ✓ ✓

CardTca ✓ ✓

Channel ✓ ✓ ✓ ✓ ✓

ChanPerformanceMonitor ✓ ✓ ✓

Circuit ✓ ✓ ✓ ✓ ✓ ✓ ✓

Customer ✓ ✓ ✓ ✓ ✓ ✓

DefinedPath ✓ ✓

LPort ✓ ✓a ✓ ✓b ✓ ✓ ✓ ✓ ✓

NetCac ✓ ✓ ✓

Performance Monitor ✓ ✓ ✓

PFdl ✓ ✓ ✓

PMP Circuit Leaf Endpt ✓ ✓ ✓ ✓ ✓

PMP Circuit Root Endpt ✓ ✓ ✓ ✓ ✓

PMP SPVC Leaf Endpt ✓ ✓ ✓ ✓ ✓

PMP SPVC Root Endpt ✓ ✓ ✓ ✓ ✓ ✓

PnniNode ✓ ✓ ✓ ✓ ✓

PPort ✓ ✓ ✓ ✓ ✓

PPortTca ✓ ✓

RefTimeServer ✓ ✓ ✓ ✓ ✓

Service Name ✓ ✓ ✓ ✓ ✓ ✓

SMDS Address Prefix ✓ ✓ ✓ ✓ ✓ ✓

SMDS Alien Group
Address

✓ ✓ ✓ ✓ ✓ ✓
NavisXtend Provisioning Server User’s Guide 11/24/981-39

Beta Draft Confidential
Overview
Valid Object Types for Operational Functions
SMDS Alien Individual
Address

✓ ✓ ✓ ✓ ✓ ✓

SMDS Country Code ✓ ✓ ✓ ✓ ✓ ✓

SMDS Group Screen ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SMDS Individual Screen ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SMDS Local Individual
Address

✓ ✓ ✓ ✓ ✓ ✓

SMDS Netwide Group
Address

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SMDS Switch Group
Address

✓ ✓ ✓ ✓ ✓

Soft PVC Circuit ✓ ✓ ✓ ✓ ✓

SVC Address ✓ ✓ ✓ ✓ ✓

SVC Config ✓ ✓

SVC CUG ✓ ✓ ✓ ✓ ✓

SVC CUG Member ✓ ✓ ✓ ✓ ✓

SVC CUG Mbr Rule ✓ ✓ ✓ ✓ ✓

SVC Network ID ✓ ✓ ✓ ✓ ✓ ✓

SVC Node Prefix ✓ ✓ ✓ ✓ ✓

SVC Prefix ✓ ✓ ✓ ✓ ✓

SVC Security Screen ✓ ✓ ✓ ✓ ✓ ✓

SVC SecScnActParam ✓ ✓ ✓ ✓

SVC UserPart ✓ ✓ ✓ ✓

Switch ✓ ✓ ✓ ✓

Traffic Descriptor ✓ ✓ ✓ ✓

Traffic Shaper ✓ ✓ ✓

Trunk ✓ ✓ ✓ ✓ ✓ ✓

VPCI Table ✓ ✓ ✓ ✓ ✓ ✓

Vitual Private Network ✓ ✓ ✓ ✓ ✓ ✓

a For binding an MLFRMember LPort to an MLFRBundle LPort
b For unbinding an MLFRMember LPort to an MLFRBundle LPort

Table 1-4. Valid Object Types for Operational Functions (Continued)

Object Type Add
Object

Add
Member

Delete
Object

Delete
Member

Get List
All

List Modify Diag Get
Oper
Info
1-4011/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Object Attributes

dify

ified

s the

ill

Object Attributes

For each of the managed objects supported by the Provisioning Server, there are
arguments (attributes) that can be read or configured through the API or CLI. An
argument list is represented as follows:

The NavisXtend Provisioning Server Object Attribute Definitions lists the various
object types supported by the Provisioning Server and their associated attributes. See
that guide to determine which attributes apply to which object types.

Circuit Provisioning

The Provisioning Server uses a retry control to ensure reliability and accuracy of
circuit provisioning. The retry control is used for provisioning circuits on B-STDX
8000, B-STDX 9000, CBX 500, and GX 550 switches. This control specifies retry
behavior in the event of a failed attempt to add, delete, or modify a circuit.

By default, when the Provisioning Server receives a request to add, delete, or modify a
circuit, the server obtains card status for both circuit endpoints:

• If both cards are up, the Provisioning Server performs the add, delete, or mo
request as normal.

• If either card is down or is not reachable (for example, because of an SNMP
timeout), the server retries the request for card status as many times as spec
by the retry control (in the range of 0 to 5 times):

– If the card becomes reachable and is up, the Provisioning Server perform
circuit provisioning request.

– Once all retries have been issued, if the card is still not reachable or is st
down, the provisioning request is not performed.

The control that specifies retry behavior of circuit provisioning requests takes the
following forms:

In: Argument List represented as:

C An opaque pointer that is manipulated using utility functions.

C++ A class that is manipulated using member functions.

CLI String representations of the attributes.
NavisXtend Provisioning Server User’s Guide 11/24/981-41

Beta Draft Confidential
Overview
Circuit Provisioning
This control prevents circuits from being partially provisioned and the database from
becoming out of sync with the switch. However, it can increase the time it takes to
provision a circuit, depending on how many card status checks occur.

Keep in mind that this control affects the retry behavior of circuit provisioning
requests only. Other retry controls specified in cascadeview.cfg
(CV_SNMP_MAX_RETRIES, CV_SNMP_RETRY_INTERVAL, and
CV_SNMP_REQUEST_TIMEOUT) also apply to each request. Remember to
consider these other retry controls when specifying retry behavior of a circuit request.

Related Error Reporting

Whenever the Provisioning Server determines that a card is down or is not reachable,
and thus a circuit provisioning request cannot be performed, the server returns an error
indicating the reason for failure and specifying which card is affected.

If the card becomes reachable and is up, the Provisioning Server performs the circuit
provisioning request. During the provisioning process, if either endpoint returns an
error (such as SnmpTimedOut, SnmpBadValue, or SnmpNoSuchName), the server
returns an error indicating the reason for failure and specifying which endpoint is
affected (including switch name, LPort name, slot ID, PPort ID, and DLCI number).

MIB clients can query the Command Error Table to obtain this error information.

Environment Variable to Override Status Check

If you do not want the Provisioning Server to obtain card status prior to provisioning
circuits, you can override the server’s default behavior. To do so, set the server
environment variable CV_CARD_STATS to DISABLE.

For details, see “Disabling Card Status Checking” on page2-20.

In: Retry Control represented by:

API C functions: CvSetNumRetries and CvGetNumRetries

C++ functions: setNumRetries and getNumRetries

(See the NavisXtend Provisioning Server Programmer’s Reference.)

CLI Environment variable CV_CLI_NUM_RETRIES

(See “Specifying Retry Behavior” on page2-13.)

MIB NumRetries attribute

(See “NumRetries Attribute” on page4-9.)
1-4211/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Bit Mask
Bit Mask

Table 1-5 describes Provisioning Server bit mask configuration.

Table 1-5. Bit Mask Configuration

Card PPortChDs3Channels

InUsea or

ChannelsInUse?b

a Indicates which of the 28 DS1s has logical port allocations. For example, if channel 28 contains a
logical port, then the value of ChDS3ChannelsInUse is 1342177278, which is the equivalent of
10000000000000000000000000000 in binary. If channel 11 contains a logical port, the value of
ChDS3ChannelsInUse is 1024, or 10000000000 in binary. The bit set is the 11th bit in the bit
mask, corresponding to the 11th channel.

b Indicates which of the DS0s/TS0s have been assigned to logical ports. For example, if channel 28
is assigned to a logical port, then the value of ChannelsInUse is 1342177278, which is the
equivalent of 10000000000000000000000000000 in binary. If channel 11 is assigned to a logical
port, then the value of ChannelsInUse is 1024, or 10000000000 in binary. The bit set is the 11th
bit in the bit mask, corresponding to the 11th channel.

PPort
Allocated
Channel

Count/c

Allocated

Channelsd

c Shows the number of DS0s that are allocated for this DS1 channel.
d Shows which DS0s are allocated. For example, if DS0s 1, 2, and 8 are allocated on one DS1, then

the value for AllocatedChannelCount is 3, because 3 DS0s are allocated. AllocatedChannels has
the value of 131, which is the equivalent of 10000011. The first bit is DS0 8, and the last 2 bits are
for DS0s 1 and 2. The 8th, 2nd, and 1st bits settings correspond to the 8th, 2nd, and 1st DS0s.

Channel
Allocated
Channel

Countc/
Allocated

Channelsd

LPort
Fractional

DS0se

e Shows which DS0s are assigned to this logical port. For example, DS0s 1, 2, and 8 are allocated
for a particular DS1(see the description for ChannelsInUse), so they are available for assignment
to a logical port. However, if only DS0s 1 and 8 are assigned to a logical port, the value of
FractionalDS0s is 129, or the equivalent of 10000001. The first bit is for DS0 8, and the last bit is
for DS0 1. The 8th and 1st bits settings correspond to the 8th and 1st DS0s.

4Ports24ChannelsFractT1 ChannelsInUse ✓ ✓

4Ports30ChannelsFractE1 ChannelsInUse ✓ ✓

4PortsUnchannelizedT1 ChannelsInUse ✓

4PortsUnchannelizedE1 ChannelsInUse ✓

4Ports24ChannelsDSX ChannelsInUse ✓ ✓

10PortsDSX1 CannelsInUse ✓

1PortChannelizedDs3 ChDS3ChannelsInUse ✓ ✓

1PortChannelizedDS310 ChDS3ChannelsInUse ✓ ✓

12PortsUnchannelizedE1 ChannelsInUse ✓
NavisXtend Provisioning Server User’s Guide 11/24/981-43

Beta Draft Confidential
Overview
SVC Addressing

 last 4
or

tes
nBits
SVC Addressing

SVC addresses are represented as strings, using the following convention:

<Address-Format-Type-ID>-<Address-Prefix>-<nBits>

Address-Format-Type-ID is the number that represents the format of the SVC address.
Valid values are as follows:

1 — E.164native

2 — DCCAESA

3 — ICDAESA

4 — E.164AESA

5 — CustomAESA

6 — DefaultRoute

7 — UserPart

8 — Carrier ID Code (CIC)

9 — Data Network ID Code (DNIC)

10 — X.121

11 — DCCAnycastAESA

12 — ICDAnycastAESA

13 — E.164AnycastAESA

Address-Prefix is the complete SVC address prefix. For AESA addresses, if the
address prefix is an odd number of characters, the Provisioning Server stuffs the
bits of the last octet with zeros, thereby appending a zero to the address prefix. F
CIC addresses, the address prefix can be from 1 to 8 characters long. For DNIC
addresses, the address prefix is 4 characters long.

nBits is the number of bits. This field is optional for all address formats except for
DefaultRoute. For DefaultRoute, you must specify the number of bits as zero.

For other address formats, if you omit this field, the Provisioning Server calcula
the value and appends it to the address prefix. The algorithms used to calculate
values are presented in Table 1-6.

Table 1-6. Calculated nBits Values

Address Format Type Address-Format-Type-ID Calculated nBits Value

E.164native 1 string length of address prefix * 8

DCCAESA 2 (integral-part-of((string length of
address prefix + 1)/2)*8)
1-4411/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

SVC Addressing

s an

, the

e
String Conversion

In the following cases, the Provisioning Server performs an address string conversion:

• When you omit the nBits field, the Provisioning Server calculates and append
nBits value to the prefix address.

• When an address prefix of an AESA address is an odd number of characters
Provisioning Server appends a zero to the prefix address.

A converted string is equivalent to the original string. Either address string can b
used in an operation.

Each of the address formats is described in the following sections.

ICDAESA 3 (integral-part-of((string length of
address prefix + 1)/2)*8)

E.164AESA 4 (integral-part-of((string length of
address prefix + 1)/2)*8)

CustomAESA 5 (integral-part-of((string length of
address prefix + 1)/2)*8)

UserPart 7 56

Carrier ID Code (CIC) 8 string length of address prefix * 8

Data Network ID Code 9 string length of address prefix * 8

X.121 10 string length of address prefix * 8

DCCAnycastAESA 11 (integral-part-of((string length of
address prefix + 1)/2)*8)

ICDAnycastAESA 12 (integral-part-of((string length of
address prefix + 1)/2)*8)

E.164AnycastAESA 13 (integral-part-of((string length of
address prefix + 1)/2)*8)

Table 1-6. Calculated nBits Values (Continued)

Address Format Type Address-Format-Type-ID Calculated nBits Value
NavisXtend Provisioning Server User’s Guide 11/24/981-45

Beta Draft Confidential
Overview
SVC Addressing

s
E.164native

Specify an E.164native address as a numeric string of 1 - 15 characters.

For example:

1-12345

where 1 specifies the address format type E.164native, and 12345 represents the
address prefix. Since no nBits value is specified, the Provisioning Server calculates a
value and appends it to the address. The string is converted to:

1-12345-40

AESA Addresses

Specify an AESA address as a hexadecimal string. The first two characters of the
address prefix represent the AFI value. The address prefix must be in the range of 2 -
40 characters. The number of bits must be in the following range:

(integral-part-of((string length of address - 1)/2)*8)< nBits ≤
(integral-part-of((string length of address + 1)/2))*8

The minimum value for nBits is 8.

In the case of CustomAESA format, the AFI value can be any two hexadecimal
characters.

If the address prefix is an odd number of characters, the Provisioning Server stuffs the
last 4 bits of the last octet with zeros, thereby appending a zero to the address prefix.

Standard AFI values are:

39 — DCCAESA

45 — E.164AESA

47 — ICDAESA

BD — DCCAnycastAESA

C5 — ICDAnycastAESA

C3 — E.164AnycastAESA

Example 1

2-39

where 2 specifies the address format type DCCAESA, and 39 represents the addres
prefix (consisting of the AFI value only).
1-4611/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

SVC Addressing
Since no nBits value is specified, the Provisioning Server calculates a value and
appends it to the address. The string is converted to:

2-39-8

Example 2

2-391234567890abcde

where 2 specifies the address format type DCCAESA, and 39123456789abcde
represents the address prefix. Since no nBits value is specified, the Provisioning
Server calculates a value and appends it to the address. And, because the address
prefix is an odd number of characters, the Provisioning Server appends a zero to the
address prefix. The string is converted to:

2-391234567890abcde0-72

Example 3

2-391234567890abcde-70

where 2 specifies the address format type DCCAESA, 391234567890abcde
represents the address prefix, and 70 represents the nBits value. In this example, the
valid range for nBits is:

(integral-part-of((17 - 1)/2)*8) < nBits ≤ (integral-part-of((17 + 1)/2))*8

64 < nBits ≤ 72

Because the address prefix is an odd number of characters, the Provisioning Server
appends a zero to the address prefix. The string is converted to:

2-391234567890abcde0-70

Example 4

5-ff1234-23

where 5 specifies the address format type CustomAESA, ff1234 represents the
address prefix (with AFI value ff), and 23 represents the nBits value. In this example,
the valid range for nBits is:

(integral-part-of((6 - 1)/2)*8) < nBits ≤ (integral-part-of((6 + 1)/2))*8

16 < nBits ≤ 24
NavisXtend Provisioning Server User’s Guide 11/24/981-47

Beta Draft Confidential
Overview
SVC Addressing

le:

ess

sents

ddress
ue
Example 5

11-BD1234567890abcde-70

where 11 specifies the address format type DCCAnycastAESA, BD1234567890abcde
represents the address prefix (with AFI value BD), and 70 represents the nBits value.
In this example, the valid range for nBits is:

(integral-part-of((17 - 1)/2)*8) < nBits £ (integral-part-of((17 + 1)/2))*8

64 < nBits ≤ 72

DefaultRoute

Specify a Default Route address as the address prefix 00 and 0 bits. For examp

6-00-0

where 6 specifies the address format type DefaultRoute, 00 represents the addr
prefix, and 0 represents the number of bits.

UserPart

Specify a User Part address as a hexadecimal string of 14 characters.

The value for nBits is 56.

For example:

7-1234567890abcd

where 7 specifies the address format type UserPart, and 1234567890abcd repre
the address prefix. Since no nBits value is specified, the Provisioning Server
calculates a value and appends it to the address:

7-1234567890abcd-56

X.121

Specify an X.121 address as a numeric string of 1 - 15 characters.

For example:

10-12345

where 10 specifies the address format type X.121, and 123456 represents the a
prefix. Since no nBits value is specified, the Provisioning Server calculates a val
and appends it to the address:

10-12345-40
1-4811/24/98 NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
Overview

Class B Addressing

t

ion
nd an
uld

ral

 do
Class B Addressing

The Provisioning Server treats all IP Addresses as Class B addresses. The server
interprets all addresses as follows:

• First 2 bytes of an IP address are used as the network ID.

• Second 2 bytes of an IP address are used as the switch ID.

The Provisioning Server uses the third byte of the address as the Class B subne
number. For example, the server interprets the following network address:

128.100.111.0

as network address 128.100.0.0 and subnet number 111.

General API Usage

This section provides the basic procedures for performing operations with the
Provisioning Server API.

The API operates by establishing a session to the Provisioning Server. The sess
maintains internal context between the client and the server: it opens a socket a
associated file descriptor. More than one session can be open at a time. You sho
close a session before the program terminates.

C Program

To use most of the C commands, a client program must follow the following gene
steps:

1. Issue CvConnect to establish a session with the Provisioning Server.

2. Identify the object to be operated on. To do so, issue CvCreateObjectTypeId to
fill in the CvObjectId structure.

3. Identify necessary arguments (object attributes) and set values, if needed. To
so, either:

• Issue a single function (CvArgsMakeVals or CvArgsMakeIds) that takes a
variable number of arguments and builds the required data structure.

• Issue a series of utility functions that create (CvArgsMake) and fill in
(CvArgsSetAttrType) the required data structure.

4. Issue an operational function on the object.

5. Use select loop processing functions to receive and process the response.
NavisXtend Provisioning Server User’s Guide 11/24/981-49

Beta Draft Confidential
Overview
General API Usage
6. Once the request has been processed, issue CvArgsFree to free the memory used
by the argument list.

7. When the application exits, issue CvClose to terminate the session with the
Provisioning Server.

C++ Program

To use most of the C++ commands, a client program must follow these general steps:

1. Establish a session with the Provisioning Server. To do so, create a CvClient class
and issue the CvClient::open function to pass CvClient arguments that provide
session context.

2. Identify the object to be operated on. To do so, create and set values in a
CvClient::ObjectId object.

3. Identify necessary arguments (object attributes) and set values, if needed. To do
so, create and set values in a CvClient::Args object.

4. Issue an operational function on the object.

5. Use select loop processing functions to receive and process the response.

6. When the application exits, terminate the session with the Provisioning Server. To
do so, either:

• Issue CvClient::close. This function does not delete the CvClient class
object, but does terminate the session with the Provisioning server.

• Use the CvClient destructor.
1-5011/24/98 NavisXtend Provisioning Server User’s Guide

NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
2

oning
ng

 the
Installation and Administration

This chapter describes hardware and software requirements and how to perform a new
installation of the Provisioning Server and the Application Toolkit. It also describes
the steps required for the following administrative tasks:

• Setting environment variables to configure the various components of the
Provisioning Server system

• Stopping and restarting the Provisioning Server and the CLI

• Troubleshooting problems with the Provisioning Server

• Developing a provisioning application

Prerequisites

This section describes the hardware and software required by the NavisXtend
Provisioning Server.

This product requires one or more workstations: one is designated as the Provisi
Server and the others are designated as the Provisioning clients. The Provisioni
Server and clients can reside on the same workstation.

Provisioning Server Requirements

This section lists the minimum requirements for the Provisioning Server.

Server Hardware

To run the Provisioning Server, you must have an UltraSparc2 or equivalent with
following minimum hardware:

• 70 MB disk space

• CD-ROM drive
2-1

Installation and Administration
Prerequisites

Beta Draft Confidential

 files.
t be a

st be

un
s

the
The CPU and RAM requirements for the Provisioning Server depend on the number
of clients that will issue requests to the server. Typically, CPU or RAM requirements
are less than those required for a NavisCore installation. For details, see the
NavisCore Network Management Station Installation Guide.

Server Software

The Provisioning Server requires NavisCore. A minimum of NavisCore Release
04.01.01.00 must be installed on a network workstation to at least the point where the
Sybase database is installed and configured. The Provisioning Server can be installed
on either the same host as Naviscore or on a different host, as long as the Provisioning
Server can reach the Sybase database and the switches.

Before you install the Provisioning Server software, verify that the following software
programs are installed (for instructions, see the NavisCore Network Management
Station Installation Guide):

Sun Microsystems SunSoft™ Solaris® 2.5.1 cluster patch
(2.5.1_Recommended.tar.Z) OR Solaris 2.6 plus Solaris 2.6 cluster patch
(2.6_Recommended.tar.Z)

SYBASE Open Server™, Release 11 — The relational database software program
for storing database information and providing backup and recovery of database
This software must be installed on the network and the Provisioning Server mus
client of that database.

NavisCore, Version 04.01.01.00 — The Provisioning Server installation utilizes the
NavisCore-specific installation procedures. Thus, at a minimum, this software mu
installed to the point where the SYBASE database is installed and configured.

Provisioning Client Requirements

This section lists the minimum requirements for the Provisioning client.

Client Hardware

The minimum hardware required to run a NavisXtend Provisioning client is any S
SPARCstation or equivalent. The Provisioning Server Application Toolkit require
approximately 15 MB of disk space.

Ascend recommneds that this release of the Provisioning Server be used with
following software versions:
 - Solaris 2.6
 - SYBASE 11.0.3.3
2-211/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Installation Instructions

Beta Draft Confidential

 or

r

the

-area

g

the
Client Software

Before you install the Application Toolkit software, verify that the following software
programs are already installed on the workstation:

Sun Microsystems SunSoft Solaris 2.5.1 plus Solaris 2.5.1 cluster patch
(2.5.1_Recommended.tar.Z), OR Solaris 2.6 plus Solaris 2.6 cluster patch
(2.6_Recommended.tar.Z)

SPARCWorks™ compiler version 4.0, 4.1, or 4.2 — The compiler required to
compile a C or C++ program. This software is required only if you plan to write a C
C++ program; it is not required if you plan to use the CLI only.

SMIv2 MIB compiler — An SMIv2-compliant compiler required to compile the
Provisioning Server MIB. This software is required only if you plan to use the
Provisioning Server MIB; it is not required if you plan to write a C or C++ program o
use the CLI only.

Switch Requirements

For minimum switch software revisions required by the Provisioning Server, see
Software Release Notice for NavisCore Release 04.01.01.00.

Network Requirements

The Provisioning Server must be configured in a TCP/IP network and must have
access to the Ascend switches.

The Provisioning client must have access to the Provisioning Server over a local
or wide-area network.

Installation Instructions

This section describes how to install the Provisioning Server and the Provisionin
Server Application Toolkit.

For instructions on upgrading your Provisioning Server software from a previous
version, see the Software Release Notice for NavisXtend Provisioning Server.

Ascend recommneds that this release of the Provisioning Server be used with
following software versions:
 - Solaris 2.6
 - SPARCWorks compiler 4.2
NavisXtend Provisioning Server User’s Guide 11/16/982-3

Installation and Administration
Installation Instructions

Beta Draft Confidential
For any updates to this installation procedure, see the Software Release Notice for
NavisXtend Provisioning Server.

Installing the Provisioning Software in a Single-System
Configuration

This section describes how to install the Provisioning Server software on the same
workstation as the SYBASE database and NavisCore. The procedure requires that you
already have NavisCore installed and that the database contains information on the
switches that you wish to access through the server.

To install the Provisioning Server and the Application Toolkit, perform the following
steps:

1. Log on as the root user and enter the root password.

2. Insert the Provisioning Server media into the media drive.

3. Enter the following command to start the installation script:

[media device]/install_NAVISeps

where [media device] is the name of the machine media device (for example,
/cdrom/cdrom0).

The pkgadd menu appears, listing the NAVISeps package.

The following packages are available:

1 NAVISeps NavisXtend Provisioning Server

(sparc) [version #]

Select package(s) you wish to process (or ‘all’ to process all

packages). (default: all) [?,??,q]:

The installation script prompts you for the Sybase DSQUERY name, NavisCore
Sybase database name, and Sybase administrator name and password. Determine
these values before you begin the installation.

If the installation utility detects another instance of the Provisioning Server on
your system, it prompts whether you want to remove that instance. If you answer
yes, it removes the instance and performs a fresh install. If you answer no, the
installation script quits.
2-411/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Installation Instructions

Beta Draft Confidential
4. Select the NavisXtend Provisioning Server package.

The installation utility prompts you to select the components you want to install
on the machine.

c) Install NAVISXtend Client

s) Install NAVISXtend Server

b) Install both NAVISXtend Client and Server

q) Exit this install

Selection:

5. Specify which components you want to install on the machine. You can install the
Provisioning client (which includes the CLI, the Provisioning Server Application
Toolkit client libraries, and the client include files), the Provisioning Server, or
both. The Provisioning Server and client occupy approximately 50 MBytes of
disk space.

Keep in mind that if you choose to install only the Provisioning Server on a
machine, the CLI binaries and associated links will not be present on that server
machine.

If you choose to install only the client on a machine, skip to Step 19.

6. When prompted, specify whether NavisCore is installed on the machine.

If you answer yes, the installation utility prompts you to enter the base directory
where NavisCore is installed.

7. Enter the path to the directory where NavisCore is installed.

8. If the installation utility detects configuration files on your system, it prompts
whether you want to use these existing files for the installation (instead of having
to enter configuration values). If you answer yes, the utility will create symbolic
links to the configuration files.

9. The installation utility prompts whether the file start-server.sh was saved from a
previous installation and asks whether you want to re-use the file for this
installation. If you answer yes, the utility prompts you for the path to the file.

10. If the installation utility detects MIB files in /opt/CascadeView/snmp_mibs, it
prompts whether you want to create symbolic links to the MIB files in the
/opt/ProvServ/snmp_mibs directory. And, it prompts whether you want to create a
symbolic link for the Provisioning Server MIB file (provserv.mib) to in
/opt/CascadeView/snmp_mibs.

11. Indicate your choices to these prompts.

12. When prompted, enter the Sybase DSQUERY name.

13. When prompted, enter the Sybase Database name for the NavisCore database.

14. When prompted, enter the Sybase system administrator user name for the
NavisCore database.

15. When prompted, enter the system administrator password.
NavisXtend Provisioning Server User’s Guide 11/16/982-5

Installation and Administration
Installation Instructions

Beta Draft Confidential
16. At the verification prompt, re-enter the system administrator password.

The installation utility displays the values you input and allows you to change
them.

17. Make any necessary changes.

18. When prompted, specify whether you want the installation utility to save copies of
the configuration files and start-server.sh at de-install time. If you answer yes,
the utility prompts you for the path where you want to save the file.

19. The installation utility displays the confirmation message:

Install NAVISXtend [version #]? (y) [y,n,?,q]

20. Enter y to continue.

The installation utility prompts you to enter the package base directory.

Enter path to package base directory [?,q]

21. Enter the path to the directory where you want the package installed.

The installation utility performs various verification functions and displays the
message:

This package contains scripts which will be executed with

super-user permission during the process of installing this

package.

Do you want to continue with the installation of this package

[y,n,?]

22. Enter y to continue.

The installation utility completes the installation and displays the message:

Installation of <NAVISeps> was successful.

The installation of the Provisioning Server is complete. Before you run the server,
perform the post-installation tasks described in “Post-Installation Tasks” on page2-7.
2-611/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Installation Instructions

Beta Draft Confidential

lete.

d in

oning

Installing the Provisioning Software in a Two-System
Configuration

This section describes how to install the Provisioning Server software on a separate
host from NavisCore and SYBASE. For details on how to perform these tasks in
NavisCore, see the NavisCore NMS Getting Started Guide.

1. In NavisCore, add an NMS entry to each switch the Provisioning Server will
provision. Specify the IP address of the host on which the Provisioning Server
will reside.

2. In NavisCore, add an NMS path, specifying the IP address of the host on which
the Provisioning Server will reside.

3. On the host on which the Provisioning Server will reside, log in as the root user
and enter the root password.

4. Create the /opt/sybase directory.

5. On the NavisCore host, copy the file /opt/sybase/interfaces to the /opt/sybase
directory on the host on which the Provisioning Server will reside.

6. Install the Provisioning Server. Follow the instructions in “Installing the
Provisioning Software in a Single-System Configuration” on page2-4.

The installation of the Provisioning Server in a two-system configuration is comp

Before you run the server or the CLI, perform the post-installation tasks describe
the next section.

Post-Installation Tasks

This section describes post-installation steps you need to perform on the Provisi
Server, the CLI, and the Provisioning client.

Modifying the Configuration File

If, during installation, you specified that the installation utility use the default
configuration files provided by the Provisioning Server, and your NavisCore database
name is different than cascview, you need to modify the cvdb.cfg file. To do so, use a
text editor to modify the cvdb.cfg file located in /<install directory>/ProvServ/etc.

Change the following entries:

CVDB_DB_NAME=<database-name>

CVDB_USER_NAME=<database-name>

where <database-name> is the name of the Sybase database for the NavisCore
database.
NavisXtend Provisioning Server User’s Guide 11/16/982-7

Installation and Administration
Installation Instructions

Beta Draft Confidential

g

ocate
ote
Testing the Server

During server installation, the init program (/etc/inittab) was modified to cause the
system to automatically restart the server process whenever the system reboots. To
start the server manually for testing, issue the following command:

/sbin/init Q <Return>

This command causes the init program to read the file /etc/inittab.

Test the server to make sure that it is running and is accessible. To do so:

1. Log on as a user other than root.

2. Issue a CLI command for an existing switch in the NavisCore database:

/opt/ProvServ/bin/cvget switch.nn.nn.nn.nn -Location<Return>

where nn.nn.nn.nn is the decimal IP address of the switch. If the Provisioning
Server is operating, the cvget command prints the location of the switch you
specified. Verify that the returned location is valid for that switch.

For instructions on how to troubleshoot problems with the server, see
“Troubleshooting Problems” on page2-22.

Setting Environment Variables

There are several environment variables you can set to configure the Provisionin
Server. Specifically, you can:

• Specify the server’s local port

• Specify the server’s core file location

• Enable server trace files

• Control certain SNMP parameters

For instructions on how to set these environment variables, see “Configuring the
Provisioning Server” on page2-15.

If the CLI and the Provisioning Server are located on the same host, the CLI can l
the Provisioning Server by default. If the CLI and the Provisioning Server are rem
from one another, you need to identify the location and port number of the
Provisioning Server. To do so, set the following environment variables in the user’s
shell start-up script (such as .cshrc, .login, or .profile):

CV_CLI_SERVER_HOST — Set this variable to the IP address of the remote
Provisioning Server. Specify the address in either numeric format (such as
152.148.50.2) or in text format (such as provserv.xyz.com).
2-811/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Installation Instructions

Beta Draft Confidential

all

se, or

e

ting

.

e

new
I.

e
e
CV_CLI_SERVER_PORT — Set this variable to the port number of the remote
Provisioning Server.

There are other environment variables you can set to configure the CLI. Specificy,
you can:

• Specify whether updates are made to the network component and the databa
to the database only

• Specify security settings

• Control certain SNMP parameters

For instructions on how to set these environment variables, see “Configuring the CLI”
on page2-12.

Testing the CLI

Test the CLI to make sure that it is running and can access the Provisioning Servr. To
do so:

1. Log on as a user other than root.

2. Issue a CLI command for an existing switch in the NavisCore database:

/opt/ProvServ/bin/cvget switch.nn.nn.nn.nn -Location<Return>

where nn.nn.nn.nn is the decimal IP address of the switch. If the CLI is opera
and can access the Provisioning Server, the cvget command prints the location of
the switch you specified. Verify that the returned location is valid for that switch

For instructions on how to troubleshoot problems with the CLI, see “Troubleshooting
Problems” on page 2-22.

Recompiling an Existing Provisioning Client

If you have a Provisioning application that was built with a previous version of th
Provisioning Server Application Toolkit and you want to use the new features of the
Provisioning Server API, you need to make the necessary code changes for the
functions and attributes, and recompile and relink your program with the new AP

If you do not want to use the new features of the Provisioning Server API, no cod
changes are necessary. You need only to recompile and relink your program with th
current version of the API include files and libraries.
NavisXtend Provisioning Server User’s Guide 11/16/982-9

Installation and Administration
Installation Instructions

Beta Draft Confidential

de

for
Installed Files

Once you install the toolkit, the CLI commands and the files you need to write a
program with the API are present on the workstation hard disk:

Command line interface and binary file — Contained in the file
/opt/ProvServ/bin/cli, as well as various links contained in /opt/ProvServ/bin.

Client libraries — Contained in the directory /opt/ProvServ/lib.

Client include files — Contained in the directory /opt/ProvServ/include.

Sample code — Contained in the directory /opt/ProvServ/src. The C++ sample co
is in the file CircuitDefinedPath.C.

Programming Files

Table 2-1 lists the files (located in the directory /opt/ProvServ/include) necessary
development of an NavisXtend Provisioning client program.

Table 2-1. Programming Files for Client Development

File Description

ProvClient.h Header file for the C APIs; contains definitions and function
prototypes. If you are programming in C, include this file in
your source code.

CvClient.H Header file for the C++ APIs; contains definitions and
function prototypes. If you are programming in C++,
include this file in your source code.

CvDefs.H Contains some definitions that are common to both the C
and C++ APIs. The ProvClient.h and CvClient.H files
contain a #include statement that incorporates CvDefs.H.
Therefore, as long as you include either ProvClient.h or
CvClient.H, you do not need to explicitly include
CvDefs.H in your source code.

CvObjectType.H Defines the enumerated object types used by both the C and
C++ APIs. The ProvClient.h and CvClient.H files contain
a #include statement that incorporates CvObjectType.H.
Therefore, as long as you include either ProvClient.h or
CvClient.H, you do not need to explicitly include
CvObjectType.H in your source code.
2-1011/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Setting Environment Variables

Beta Draft Confidential
Setting Environment Variables

This section describes how to set environment values to configure the behavior of the
CLI, the Provisioning client, and the Provisioning Server. To configure the
Provisioning Server, add the environment variables to the start-up script that launches
the server. To configure the Provisioning client or the CLI, add the environment
variables to the user’s shell start-up script, such as .cshrc, .login, or .profile.

CvArgId.H Defines all argument IDs used by both the C and C++ APIs.
The ProvClient.h and CvClient.H files contain a #include
statement that incorporates CvArgId.H. Therefore, as long
as you include either ProvClient.h or CvClient.H, you do
not need to explicitly include CvObjectId.H in your source
code.

CvParamValues.H Defines the values for each of the enumerated attributes
used by both the C and C++ APIs. Include this file in your
source code.

CvObjectId.H Defines the CvObjectId structure used by the C API to
identify objects. ProvClient.h contains a #include
statement that incorporates CvObjectId.H. Therefore, as
long as you include the ProvClient.h file, you do not need
to explicitly include CvArgId.H in your source code.

CvUSL.H Defines simple wrapper classes for various unsigned long
data types used by the C++ APIs. CvClient.H contains a
#include statement that incorporates CvUSL.H. Therefore,
as long as you include CvClient.H, you do not need to
explicitly include CvUSL.H in your source code.

CvE164Address.H Defines a helper class used in the C++ APIs. CvClient.H
contains a #include statement that incorporates
CvE164Address.H. Therefore, as long as you include
CvClient.H, you do not need to explicitly include
CvE164Address.H in your source code.

CvSVCAddress.H Defines a helper class used in the C++ APIs. CvClient.H
contains a #include statement that incorporates
CvSVCAddress.H. Therefore, as long as you include
CvClient.H, you do not need to explicitly include
CvSVCAddress.H in your source code.

CvErrors.H and
CvErrors.h

Define the errors that can be returned by the APIs as well as
errors implemented by NavisCore. You do not need to
include either of these files in your source code.

Table 2-1. Programming Files for Client Development (Continued)

File Description
NavisXtend Provisioning Server User’s Guide 11/16/982-11

Installation and Administration
Setting Environment Variables

Beta Draft Confidential

se, or

are
e

the

fault.

ate

cating
Configuring the CLI

There are several environment variables you can use to configure the CLI.
Specifically, environment variables perform the following:

• Identify the Provisioning Server to which the CLI sends requests.

• Specify whether updates are made to the network component and the databa
to the database only.

• Control retry behavior of circuit provisioning requests.

• Specify security settings.

• Control certain SNMP parameters.

The best way to set the environment variables is to add them to the user’s shell
start-up script (such as .cshrc, .login, or .profile)

Identifying the Provisioning Server to the CLI

If the CLI and the Provisioning Server are running on the same host, the CLI can
locate the Provisioning Server by default. If the CLI and the Provisioning Server
remote from one another, you need to identify the location and port number of th
Provisioning Server. To do so, set the following environment variables:

CV_CLI_SERVER_HOST — Set this variable to the IP address or hostname of
remote Provisioning Server. Specify the address in numeric format (for example,
152.148.50.2). Specify the hostname in text format (for example, provserv.xyz.com).
If you do not set this variable, the CLI uses the local host by default.

CV_CLI_SERVER_PORT — Set this variable to the port number of the remote
Provisioning Server. If you do not set this variable, the CLI uses port 4001 by de

Specifying Modification Type

You can specify whether updates are made to the network components and the
database, or to the database only. Set the following environment variable:

CV_CLI_MOD_TYPE — Set this variable to the number that represents the upd
method, as follows:

1 — Sends updates to both the network component and the database. If the
network component updates successfully, the database is updated.

4 — Sends updates to the database only.

5 — Sends updates to the database only and sets a flag in the database indi
that the object is out of synchronization with the network component.
2-1211/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Setting Environment Variables

Beta Draft Confidential

dify

ified

s the

ill

rom

)
plies
e

e

uest.

ing

If you do not set this variable, the CLI sends updates to both the network component
and the database by default.

Specifying Retry Behavior

You can specify retry behavior in the event of a failed attempt to add, delete, or
modify a circuit.

By default, when the Provisioning Server receives a request to add, delete, or modify a
circuit, the server obtains card status for both circuit endpoints:

• If both cards are up, the Provisioning Server performs the add, delete, or mo
request as normal.

• If either card is down or is not reachable (for example, because of an SNMP
timeout), the server retries the request for card status as many times as spec
by the retry control (in the range of 0 to 5 times):

– If the card becomes reachable and is up, the Provisioning Server perform
circuit provisioning request.

– Once all retries have been issued, if the card is still not reachable or is st
down, the provisioning request is not performed.

This control prevents circuits from being partially provisioned and the database f
becoming out of sync with the switch. However, it can increase the time it takes to
provision a circuit, depending on how many card status checks occur.

To specify the retry control, set the following environment variable:

CV_CLI_NUM_RETRIES — Set this variable to the number of retries (from 0 - 5
for requests of card status to precede circuit provisioning requests. The value ap
to requests at either endpoint: when a retry is sent to obtain the card status of on
endpoint, the number of retries decrements for either endpoint.

If you do not set this variable, or you set it out of range, the CLI does not retry th
request for card status.

Keep in mind that this control affects the retry behavior of circuit provisioning
requests only. Other retry controls specified in cascadeview.cfg
(CV_SNMP_MAX_RETRIES, CV_SNMP_RETRY_INTERVAL, and
CV_SNMP_REQUEST_TIMEOUT) also apply to each request. Remember to
consider these other retry controls when specifying retry behavior of a circuit req

If you do not want the Provisioning Server to obtain card status prior to provision
circuits, you can override the server’s default behavior. Set the server environment
variable CV_CARD_STATS to DISABLE to disable card status checking on circuit
endpoints. For details, see “Disabling Card Status Checking” on page2-20.
NavisXtend Provisioning Server User’s Guide 11/16/982-13

Installation and Administration
Setting Environment Variables

Beta Draft Confidential

to
r
ble,

ired

red

 the

he

g
Specifying Security Settings

By default, the Provisioning Server accepts requests from the CLI without requiring
authorization. You can implement a security feature that authenticates user logins.
The feature is intended to prevent users from accidentally modifying the database; it is
not intended to prevent intentional misuse by users. To implement the security feature,
you must specify environment variables for both the CLI and the Provisioning Server.
To do so for the CLI, set the following environment variables:

CV_CLI_USE_LOGINS — Set this variable to any value (including a null value)
turn on the security feature. If you do not set this variable, the Provisioning Serve
accepts requests from the CLI without requiring authorization. If you set this varia
you must also set the following variables:

CV_CLI_USERNAME — Set this variable to the username character string requ
by NavisCore (for example, operator).

CV_CLI_PASSWORD — Set this variable to the password character string requi
by NavisCore.

The username and password character strings are sent over the network as
nonencrypted text.

To fully implement the security feature, you must also specify security settings on
server side. For instructions, see “Implementing the Security Feature” on page 2-21.

Controlling SNMP Parameters

You can specify how certain SNMP parameters are controlled. To do so, set the
following environment variables:

CV_SNMP_REQUEST_TIMEOUT — Set this variable to the amount of time (in
0.01 second increments) that the CLI waits for a response from the server. If you do
not set this variable, the CLI uses the value 256 by default.

CV_SNMP_MAX_RETRIES — Set this variable to the number of times that the
CLI retries a request that times out. If you do not set this variable, the CLI uses t
value 0 by default.

Configuring the Provisioning Client

There are several environment variables you can set to configure the Provisionin
client. Specifically, environment variables perform the following functions:

• Enable a client trace file

• Control certain SNMP parameters
2-1411/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Setting Environment Variables

Beta Draft Confidential

 file
tion

ble,

ile.

ou do

s the
r

g
The best way to set the environment variables is to add them to the user’s shell
start-up script (such as .cshrc, .login, or .profile).

Enabling a Client Trace File

You can specify that the client create a trace file. Such a file can be useful for
debugging your Provisioning client. It is recommended that you enable the trace
until the Provisioning Server and your Provisioning client are running in a produc
environment. To enable a client trace file, set the following environment variable:

CV_CLIENT_TRACE_FILE — Set this variable to the pathname of the file to
contain the trace output (for example, /tmp/ctrace.log). If you do not set this varia
no trace file is created.

Once you enable a client trace file, each session of the client is recorded in the f
Output is continuously appended to the file. If you are not debugging your
Provisioning client, it is recommended that you periodically delete the file.

Controlling SNMP Parameters

You can specify how certain SNMP parameters are controlled. To do so, set the
following environment variables:

CV_SNMP_REQUEST_TIMEOUT — Set this variable to the amount of time (in
0.01 second increments) that the client waits for a response from the server. If y
not set this variable, the client uses the value 256 by default.

CV_SNMP_MAX_RETRIES — Set this variable to the number of times that the
client retries a request that times out. If you do not set this variable, the client use
value 0 by default. For non-MIB clients, you can set this variable to any value. Fo
MIB clients, you can set this variable to any value only if you set the variable
CV_SNMP_DISCARD_RETRY to 1.

Configuring the Provisioning Server

There are several environment variables you can set to configure the Provisionin
Server. Specifically, environment variables perform the following functions:

• Specify the server’s local port and the MIB agent’s port

• Specify the server’s core file location

• Enable server trace files

• Control certain SNMP parameters

• Control ListContained context timeout

• Control MIB cache
NavisXtend Provisioning Server User’s Guide 11/16/982-15

Installation and Administration
Setting Environment Variables

Beta Draft Confidential

by

se
rt-up

t

• Control object locking

• Disable card status checking when provisioning circuits

• Specify SNMP community strings

• Specify how the server formats SMDS addresses

• Implement security feature

The Provisioning Server reads its configuration settings from two files also used
NavisCore. These shared configuration files are as follows:

• /opt/ProvServ/etc/cvdb.cfg

• /opt/ProvServ/etc/cascadeview.cfg

Rather than modifying Provisioning Server’s environment variables directly in the
files (which would also affect NavisCore), you can enable them in the server’s sta
script (/opt/ProvServ/bin/start-server.sh). Look for the invocation of cvdb.cfg and
cascadeview.cfg in start-server.sh and make the necessary modifications after tha
point in the file.

Identifying the Provisioning Server Port

The Provisioning Server uses a command line argument to identify which port to
listen for API and CLI requests. To specify this command line argument, set the
following environment variable in start-server.sh:

CV_PSRV_ARGS — Set this variable to the command -lport and the port number.
Enclose the command in quotation marks, for example:

“-lport 4002”

 If you do not set this variable, the Provisioning Server uses port 4001 by default.

Identifying the MIB Agent Port

The Provisioning Server implements an SNMP agent as a separate entity to service
MIB interface requests. The server uses an environment variable to identify which
port to listen for SNMP requests. This port is different from the port number used to
listen for API and CLI requests.

To specify this MIB agent port, set the following environment variable in
start-server.sh:

CV_SNMP_AGENT_PORT — Set this variable to the port number. If you do not
set this variable, the Provisioning Server uses port 9090 by default.
2-1611/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Setting Environment Variables

Beta Draft Confidential

ry
lid

do
ry

bled

ing
ent

ce

Core

in
n to

 the
Specifying the Core File Location

If the Provisioning Server crashes, it creates a core file. Such a file can be useful for
debugging the server. The core file is written to the Provisioning Server’s working
directory (/tmp by default). You can specify the directory where the Provisioning
Server runs and where it writes any core files. You may want to specify a directo
other than the default if /tmp gets deleted frequently and you want to ensure a va
core file. To specify a working directory, set the following environment variable in
start-server.sh:

CV_WORKING_DIR — Set this variable to the pathname of the directory. If you
not set this variable, the Provisioning Server writes its core file to the /tmp directo
by default.

Enabling Server Trace Files

By default, the Provisioning Server creates three trace files, two of which are ena
by environment variables specified in the configuration file cascadeview.cfg. Rather
than turning these trace files on or off directly in cascadeview.cfg (which would also
affect NavisCore), you can enable them in the server’s start-up script
(/opt/ProvServ/bin/start-server.sh). Look for the invocation of cascadeview.cfg in
start-server.sh and make the necessary modifications after that point in the file.

These files can be useful for troubleshooting and diagnosing problems. It is
recommended that you enable the trace files until the Provisioning Server is runn
in a production environment. To enable the trace files, set the following environm
variables:

CV_TRACE_ENABLE — Set this variable to 1 to enable the application-level tra
output for the server. If you set this variable, you must also set the CV_TRACEFILE
variable.

CV_TRACEFILE — Set this variable to the pathname of the file to contain the
application-level trace output for the server. To avoid conflicts with the NavisCore
trace file, the suffix .psrv will be appended to the filename you specify. By default,
this trace file is written to the /tmp directory.

CVDB_TRACE_FILE_NAME — Set this variable to the pathname of the file to
contain the database trace output for the server. To avoid conflicts with the Navis
trace file, the suffix .psrv will be appended to the filename you specify. By default,
this trace file is written to the /tmp directory.

CV_PSRV_TRACE_FILE — Set this variable to the pathname of the file to conta
trace output specific to the Provisioning Server. By default, this trace file is writte
the /tmp directory and is called strace.log.

Once you enable a trace file, specific activity is recorded in the file. Output is
continuously appended to the file. It is recommended that you periodically delete
trace files.
NavisXtend Provisioning Server User’s Guide 11/16/982-17

Installation and Administration
Setting Environment Variables

Beta Draft Confidential

ou do

es the

 1,
SNMP
ssing,
s the

nless

ts.
ned
 time

uest
t to
t is
If you are troubleshooting a problem, it can be useful to know what kinds of
transactions occur between the Provisioning Server and the Provisioning client. For
this reason, you should enable the client trace file as well. For instructions, see
“Enabling a Client Trace File” on page2-15.

Controlling SNMP Parameters

You can specify how certain SNMP parameters are controlled. To do so, set the
following environment variables in start-server.sh:

CV_SNMP_REQUEST_TIMEOUT — Set this variable to the amount of time (in
0.01 second increments) that the server waits for a response from the switch. If y
not set this variable, the server uses the value 256 by default.

CV_SNMP_MAX_RETRIES — Set this variable to the number of times that the
server retries a request that times out. If you do not set this variable, the server us
value 5 by default. It is recommended that you keep this setting as the default.

CV_SNMP_DISCARD_RETRY — Set this variable to 1 to enable the server to
discard multiple SNMP request retries from a MIB client. If you set this variable to
the server checks the Request ID, the IP address, and the port number of every
request. If these values match those of a request that the server is currently proce
the server ignores the retry request. If you do not set this variable, the server use
value 1 by default. It is recommended that you keep this setting as the default, u
your SNMP client generates SNMP PDUs without unique Request IDs or port
numbers.

Controlling Context Timeout

The Provisioning Server maintains context for outstanding ListContained reques
The server allows 500 ListContained requests to be outstanding. Any ListContai
request for which a NextObject request has not been issued within a configurable
period is subject to deletion to make room for a new ListContained request to be
processed. To configure this time period, set the following environment variable in
start-server.sh:

CV_PSRV_CONTEXT_TIMEOUT — Set this variable to the amount of time (in
minutes) that the server waits for a response to a ListContained request. Any req
for which a NextObject request has not been issued in that time period is subjec
deletion. If you do not set this variable, the server uses the value 10 by default. I
recommended that you keep this setting as the default.
2-1811/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Setting Environment Variables

Beta Draft Confidential

result
nce
e is
ater
lue

t
che.

ent.
t set

s
lue

LI,
rent to
. The
U.

n
ust be
t to

cked,
ify
g it.
nt
Controlling MIB Cache

The Provisioning Server implements a MIB cache that stores data in memory for a
fixed time period. The server uses this cache to optimize performance of get-next
requests and to store data to be committed to the database during transactions
involving multiple PDUs. Each table row stored in cache has a timestamp. The server
uses an environment variable to purge older data by row.

To configure this purge time period, set the following environment variables in
start-server.sh:

CV_SNMP_ROWENTRY_TIMEOUT — Set this variable to the amount of time
(in seconds) that the server stores a particular row of data in cache during a get-next
request. Based on this variable, the server flushes out entries in MIB cache that
from a get-next operation. Thus, the server uses this variable to optimize performa
of get-next requests. The minimum value of this variable is 60, the maximum valu
1800. These values apply, even if you set a value lower than the minimum or gre
than the maximum. If you do not set this variable, the server uses the timeout va
900 by default.

CV_SNMP_CMDERROR_CACHE_TIMEOUT — Set this variable to the amoun
of time (in seconds) that the server stores Command Error Table messages in ca
The Command Error Table contains error messages generated by the SNMP ag
Any error message older than this timeout value is subject to deletion. If you do no
this variable, the server uses the timeout value 3600 by default. To save all error
generated during creation and modification transactions, set this variable to a va
greater than the value of the CV_SNMP_LOCK_TIMEOUT variable.

Controlling Object Locking

The Provisioning Server uses an object locking scheme for MIB objects in the
database that differs from the locking behavior of the Provisioning Server API, C
or NavisCore. For these interfaces, the steps associated with locking are transpa
the user. When an object is created or modified, its parent object becomes locked
user specifies all the information needed to create or modify the object in one PD
Once the request completes, the parent becomes unlocked.

By contrast, in the case of the MIB, the information needed to create or modify a
object may not be available in one PDU. As a result, the locks in the database m
held for a longer time. Thus, the steps associated with locking are not transparen
the user.

If the user initiates a transaction to create an object, the parent object becomes lo
preventing other users from modifying it. If the user initiates a transaction to mod
an object, the object itself becomes locked, preventing other users from modifyin
To configure the time period that objects are locked, set the following environme
variable in start-server.sh:
NavisXtend Provisioning Server User’s Guide 11/16/982-19

Installation and Administration
Setting Environment Variables

Beta Draft Confidential

if
 value

dify a
 the

ing
ent

ng

s

 not

s.
CV_SNMP_LOCK_TIMEOUT — Set this variable to the amount of time (in
seconds) that the server:

• Locks a parent object when a child object is being created

• Locks an object that is being modified

The maximum value of this variable is 1800. This maximum value applies, even
you set a greater value. If you do not set this variable, the server uses the timeout
900 by default.

Disabling Card Status Checking

The Provisioning Server uses a retry control to ensure reliability and accuracy of
circuit provisioning. This control specifies retry behavior in the event of a failed
attempt to add, delete, or modify a circuit.

By default, when the Provisioning Server receives a request to add, delete, or mo
circuit, the server obtains card status for both circuit endpoints before it performs
provisioning request.

If you do not want the Provisioning Server to obtain card status prior to provision
circuits, you can override the server’s default behavior. Set the following environm
variable in start-server.sh:

CV_CARD_STATS — Set this variable to DISABLE to disable card status checki
on circuit endpoints.

Specifying Community Strings

The Provisioning Server supports two community names, one for Read-Only
operations and one for Read-Write operations. The community name provides a
mechanism for authentication and access-control at the SNMP agent.

The community strings are defined using the following environment variables in
start-server.sh:

CV_READONLY_COMMUNITY_STRING — Set this variable to the community
string to be used when making a Read-Only SNMP request. If you do not set thi
variable, the server uses the value ‘public’ by default.

CV_READWRITE_COMMUNITY_STRING — Set this variable to the
community string to be used when making a Read-Write SNMP request. If you do
set this variable, the server uses the value ‘ascend’ by default.

If these environment variables are defined in the script start-server.sh, the specified
strings take precedence. If they are not set in the script or if the server shell
environment does not define the variables, the server assumes the default value
2-2011/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Setting Environment Variables

Beta Draft Confidential

dress
must
e to

1, the
r
s in

e
 dash

t. For
11 as

 CLI

tally

the
If the community name is not valid when you issue an snmp_set request, the request
exceeds the time-out period and fails. You can access the Command Error Table in the
MIB to see if the source of the problem is an invalid community name. Specify the
Read-Only community name when you access the table, as that community name is
used for validation purposes.

When you make an snmp_get request, specify either the Read-Only or the Read-Write
community name. If you use a different community name and you encounter an error,
the error is not propagated to the Command Error Table.

Controlling SMDS Addresses

You can specify how the Provisioning Server formats SMDS addresses. To do so, set
the following environment variables in start-server.sh:

CV_DFLT_SMDS_CC — Set this variable to specify the default country code for
SMDS addresses. The server will prepend this default country code to a given ad
that does not specify the country code. When using multiple country codes, you
specify the country code for addresses that do not use the default code. You hav
create a country code before you can specify it as a default.

CV_DFLT_CC_PRT_ENABLE — Set this variable to control the format of
individual addresses in responses to List operations. When this variable is set to
default country code part of an address is returned in the List response. For othe
operations (AddObject, DeleteObject, Get, Modify), the server returns the addres
the same format used by the client.

CV_ SMDS_MASK_SIZE — Set this variable to specify the character length of th
address prefix in SMDS addresses. The server interprets characters preceding a
(-) as the country code part of the address, the next n characters (specified by this
variable) as the prefix part of the address, and the remainder as the address par
example, if this variable is set to 6, the server interprets the address 1-97895211
follows:

Implementing the Security Feature

By default, the Provisioning Server accepts requests from Provisioning client and
users without requiring authorization. You can implement a security feature that
authenticates user logins. The feature is intended to prevent users from acciden
modifying the database; it is not intended to prevent intentional misuse by users. To
implement the security feature, you must specify environment variables for both
CLI and the Provisioning Server. To do so for the server, set the following
environment variable in start-server.sh:

1 - 9 7 8 9 5 2 1 1 1 1

Country Code Prefix Address
NavisXtend Provisioning Server User’s Guide 11/16/982-21

Installation and Administration
Stopping and Restarting the Provisioning Server

Beta Draft Confidential

)
rver

 a user

ee
CV_PSRV_USE_LOGINS — Set this variable to any value (including a null value
to turn on the security feature. If you do not set this variable, the Provisioning Se
accepts requests from clients without requiring user authorization.

Once you set this variable, any clients sending requests to the server must send
ID and password for authorization. For a Provisioning client, this is accomplished
when the client establishes the session with the Provisioning Server. For the CLI, the
security settings are specified through environment variables. For instructions, s
“Specifying Security Settings” on page2-14.

Stopping and Restarting the Provisioning Server

To stop and restart the Provisioning Server running on a workstation:

1. On the host that runs the server, log on as the root user and enter the root
password.

2. Determine the process ID of the Provisioning Server, using the following
command:

/bin/ps -ef | grep provserv <Return>

The process ID is the second item in the resulting listing.

3. Kill the current server process, using the following command:

kill [server process id] <Return>

Once the server process is killed, the init program restarts the server.

Stopping and Restarting the CLI

To quit the CLI, press <Ctrl-C>. To restart the CLI, issue a CLI command.

Troubleshooting Problems

This section describes how to troubleshoot problems with the Provisioning Server, the
provisioning application, and the CLI.
2-2211/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Troubleshooting Problems

Beta Draft Confidential

ing

witch.
eout
g

rve

ible
the
Problem: Requests Frequently Time Out

Symptoms

Either:

• CLI prints an error message

• API-based application receives an error status

Possible Causes and Solutions

Scenario 1: Error message 4109 (“Request to the server timed out”)

• The Provisioning Server may not be running or accessible to the client
workstation. Verify that the client can access the server and that the Provision
Server is running. To do so, follow the procedure in “Testing the CLI” on
page2-9.

• The client’s timeout value may be too low. The client timeout value should allow
for instances when the server times out and later retries a command to the s
Since the server’s second request may be successful, the client should not tim
while waiting for the server’s response. Adjust the client timeout value by settin
the client CV_SNMP_REQUEST_TIMEOUT environment variable. Start with
the value 3000. If that value does not correct the problem, use the following
formula to determine a “worst case” client timeout value:

CV_SNMP_REQUEST_TIMEOUT = CV_SNMP_REQUEST_TIMEOUT *
CV_SNMP_MAX_RETRIES + n

where CV_SNMP_REQUEST_TIMEOUT is the timeout value for the server,
CV_SNMP_MAX_RETRIES is the retry value for the server and n is a factor that
allows for client-server round-trip. Start with an n value of 300. The result
(CV_SNMP_REQUEST_TIMEOUT) is the timeout value to set for the client.

For details on values to use for these environment variables for the client and ser,
see “Setting Environment Variables” on page2-11.

Scenario 2: Error message 42 (“The SNMP request to the agent timed
out”):

The Provisioning Server may take a long time to process a request because it cannot
locate the network device specified in the request (such as a switch):

• If the request is intended to modify the switch, verify that the switch is access
from the server. To do so, remotely log into the Provisioning Server and issue
ping utility to elicit a response from the switch.
NavisXtend Provisioning Server User’s Guide 11/16/982-23

Installation and Administration
Troubleshooting Problems

Beta Draft Confidential

 when
o

ct

st.
e
• If the request is intended to update the database only, retry the request with the
modification type set to update the database only. For a CLI request, set the
CV_CLI_MOD_TYPE environment variable to 4 or 5 (see “Configuring the CLI”
on page2-12.) For an API request, issue either the C function CvSetModifyType
or the C++ member function CvClient::setModifyType, specifying that updates
be made to the database only.

Problem: Object Is Locked by Others

Symptoms

Either:

• CLI prints an error message

• API-based application receives an error status

Possible Causes and Solutions

Either a NavisCore user has the object locked or the object appears to be locked
the client retries a request. To determine if the object is locked, change directories t
/opt/CascadeView/bin and execute the cv-release-locks.sh shell script. The script
lists the objects that are currently locked and who has them locked.

Scenario 1: Object Is Locked by NavisCore User

If the cv-release-locks.sh shell script indicates that a NavisCore user has the obje
locked, either:

• Wait for the user to finish (or request that he or she finish) using the object.

• Call the Ascend Technical Assistance Center.

Scenario 2: Object Appears to Be Locked During Retries

If the cv-release-locks.sh shell script does not indicate that the object is locked, a
client timeout may have occurred while the server was still processing the reque
Then, when the client automatically retried the request, the object appeared to b
locked.

Do not use the cv-release-lock.sh script to release the locks. If you need to
release locks, call the Ascend Technical Assistance Center.
2-2411/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Troubleshooting Problems

Beta Draft Confidential

e

or

tall

ands
 what
ands.

his
vide
LI
Adjust one of the following environment variables:

• Adjust the client timeout value by setting the client’s
CV_SNMP_REQUEST_TIMEOUT environment variable to a higher value. To
do so, follow the procedure in “Scenario 1: Error message 4109 (“Request to th
server timed out”)” on page 2-23.

• Adjust the client retry value by setting the CV_SNMP_MAX_RETRIES to 0. F
details on this environment variable for the client, see “Setting Environment
Variables” on page 2-11.

Technical Support

The Ascend Technical Assistance Center (TAC) is available to assist you with any
problems encountered while using the NavisXtend Provisioning Server product. To
contact the Ascend TAC, call 1-800-DIAL-WAN.

Information Checklist

Before contacting the Ascend TAC, review the following checklist to make sure you
have gathered all the information you need:

Software Version Number

Use the UNIX utility pkginfo to obtain information such as version number and ins
date for the NavisXtend Provisioning Server package:

pkginfo -l NAVISeps

Note the version number listed in the output.

Problem Report

Collect as much information as possible about the problem:

• For CLI problems, describe what commands caused the problem, what comm
preceded the problem, and how did the Provisioning Server respond (such as
error message was returned). If possible, provide the exact text for the comm

• For API problems, provide the source code that caused the problem. Try to
condense the problem to a few lines.

• You can use the API to create a CLI command that recreates the problem. T
alternative provides an easy way to recreate a problem without having to pro
code. The following code sample illustrates how to use the API to create a C
command:
NavisXtend Provisioning Server User’s Guide 11/16/982-25

Installation and Administration
Troubleshooting Problems

Beta Draft Confidential

 the

ese
e

d

 the

cify
char *argString = CvArgsToString(args);

char *objString = CvObjectIdToString(objid);

printf(“cvadd %s %s”, objString, argString);

CvStringFree(argString);

CvStringFree(objString);

Trace Files

Collect any trace files that may exist:

• Server trace files, which you enable using environment variables. By default,
these trace files are not produced. The easiest way to turn them on is to edit
start-server.sh script. They are usually written to the /tmp directory with the
filenames strace.log or the file suffix .psrv.

• Client trace files, which you enable using environment variables. By default, th
trace files are not produced. The easiest way to turn them on is to edit the usr’s
.cshrc file and adding the following line:

setenv CV_CLIENT_TRACE_FILE /tmp/ctrace.log

This command writes the client trace file ctrace.log to the /tmp directory.

If the resulting trace files are too large, collect the last 5000 lines of each file. If
necessary, compress the files using the GZIP program. If you send the compresse
files to Ascend by email, UUENCODE the files, if necessary.

For more information on how to enable trace logs, see “Enabling Server Trace Files”
on page2-17 and “Enabling a Client Trace File” on page2-15.

Core Files

If the Provisioning Server crashes, it creates a core file. Collect the core file from
Provisioning Server’s working directory, which is either /tmp by default or another
directory you specify using an environment variable. For information on how spe
the working directory, see “Specifying the Core File Location” on page2-17.
2-2611/16/98 NavisXtend Provisioning Server User’s Guide

Installation and Administration
Writing a Provisioning Application

Beta Draft Confidential

ning
Un-installation Instructions

If you decide you want to un-install the current version of the Provisioning Server and
Application Toolkit, use the pkgrm utility:

1. To un-install the Provisioning Server components using pkgrm, enter:

pkgrm NAVISeps

The utility prompts you to verify the un-install:

The following package is currently installed:

1 NAVISeps NavisXtend Provisioning Server

(sparc) [version #]

Do you want to remove this package?

2. To un-install the NavisXtend Provisioning Server package, enter y.

The un-installation utility displays the message:

Removing installed package instance <NAVISeps>

This package contains scripts which will be executed with

super-user permission during the process of removing this package.

Do you want to continue with the removal of this package [y,n,?, q]

3. Enter y to continue.

The un-installation utility performs various verification functions and displays the
confirmation message:

Are you sure you want to UNINSTALL the Provisioning Server [y/n]?

4. Enter y to continue.

The utility completes the un-installation:

Un-install complete

Removal of <NAVISeps> was successful.

The un-installation of the Provisioning Server components is complete.

Writing a Provisioning Application

To write a Provisioning application, perform the following steps:

1. Install the Provisioning Server Application Toolkit, as described in “Installation
Instructions” on page2-3.

2. Set the environment variables that control SNMP parameters for the Provisio
client. For instructions, see “Configuring the Provisioning Client” on page2-14.
NavisXtend Provisioning Server User’s Guide 11/16/982-27

Installation and Administration
Writing a Provisioning Application

Beta Draft Confidential
3. Add the following entries to your makefile:

-I/opt/ProvServ/include

-L/opt/ProvServ/lib -lClient

The first line is for all compilations; the second line is for the link step.

4. Write the program.

5. Compile the program.

Upgrading an Existing Application

If you have a Provisioning application that was built with a previous version of the
Provision Server Application Toolkit and you want to use the new features of the
Provisioning Server API, you need to make the necessary code changes for the new
functions and attributes, and recompile and relink your program with the new API.

If you do not want to use the new features of the Provisioning Server API, no code
changes are necessary. You need only to recompile and relink your program with the
current version of the API include files and libraries.
2-2811/16/98 NavisXtend Provisioning Server User’s Guide

NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
3

) in

 the

ase.

Using the CLI

This chapter describes how to use the Command Line Interface (CLI) to build a
provisioning script instead of a C or C++ program.

To understand the Provisioning Server object hierarchy, first read Chapter 1.

Using the CLI

The Application Toolkit provides a Command Line Interface (CLI) for users to build a
provisioning script instead of a C or C++ program. The CLI is a set of command-line
programs that you can issue from any UNIX shell to provision network objects in
interactive or batch mode.

There is a CLI command for each operational function of the API. Each command
uses a string representation to specify objects and attributes.

cvadd (Object ID, Attributes) — Creates an object in the database and (optionally
the switch.

cvaddmember (Object ID, Object ID) — Adds a member to an object list.

cvCreateChanPerformanceMonitorId (Object ID, Channel ID) — Creates a
CVT_ChanPerformanceMonitor object.

cvmodify (Object ID, Attributes) — Modifies specific attributes of an object.

cvdelete (Object ID) — Deletes an object from the database and (optionally) from
switch.

cvdeletemember (Object ID, Object ID) — Deletes a member from an object list.

cvget (Object ID, Attributes) — Retrieves specific attribute values from the datab

cvgetdiag (Object ID, Attributes) — Retrieves specific diagnostic information from
the Provisioning Server.
3-1

Using the CLI
Using the CLI

Beta Draft Confidential

rk.

k.

r
d, as

s of

f the
cvgetoperinfo (Object ID, Attributes) — Retrieves the values of specific real time
operational information from the switch.

cvlistcontained (Object ID, type, Attributes) — Retrieves a list of configuration
attributes for objects of the given type contained by the specified parent.

cvlistallcontained (Object ID, Attributes) — Retrieves a list of configuration
attributes for all objects contained by the specified parent.

cvstartdiag (Object ID, Attributes) — Starts diagnostics on an object in the netwo

cvstopdiag (Object ID, Attributes) — Stops diagnostics on an object in the networ

cvupdatediag (Object ID, Attributes) — Modifies diagnostic parameters on the
switch for an object being diagnosed on the network.

The commands are supported for most target object types, with a few restrictions. Fo
example, you cannot specify a switch when you issue an Add or Delete comman
the Provisioning Server does not support adding or deleting switches.

The cvhelp command provides usage help for the CLI.

For a list of the object types you can use when you issue the operational function
the CLI, see Table1-4 on page1-39.

There are several environment variables you can use to configure the behavior o
CLI. For details, see “Setting Environment Variables” on page 2-11.

CLI Usage Overview

Most of the CLI commands use the following syntax:

command object-name { -attribute-name value}

Syntax

command The name of the command. If the command is in your path,
you can enter just the command name, such as cvadd,
cvdelete, cdmodify, cvget, cvaddmember, or
cvdeletemember. Otherwise, you must prefix the command
name with the path /opt/ProvServ/bin/.

object-name The object ID. To specify an object ID, you first specify the
object’s parent (if any), including the parent type and value.
Then, you specify the child type and value. For rules on
specifying object IDs for various types of objects, see
“Managed Objects” on page1-12.
3-211/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
Using the CLI

Beta Draft Confidential
-attribute-name and value are optional parameters.

Before the CLI issues a command to the Provisioning Server, it checks the command
for correct syntax. The server checks the input parameters for validity and reports
errors back to the client.

To maximize CLI efficiency, do not set all possible attributes in a request. Specify
only attributes that are mandatory.

In some cases, a CLI command line may become too long for the shell to handle. This
can happen most often when adding LPorts. The restriction is most likely to happen
when using the sh or csh shells. It occurs only in certain circumstances when using
ksh. To work around this buffer restriction, separate the CLI command into multiple
lines. At the end of each line, insert the backslash character (\) immediately followed
by the <Return> key. This instructs the shell that the next line is part of the same
command.

For example:

cvadd switch.1.1.1.1.card.9.pport.1.lport.2 \<Return>

-serviceType smds -smdsType SsiDte \<Return>

-bandwidth 64000

-attribute-name The attribute ID appropriate to the object ID. Specify the
attribute name preceded by a dash (-). Use the attribute
ID symbols listed in the NavisXtend Provisioning Server
Object Attribute Definitions, but omit the
CVA_ObjectType prefix. For example, specify location
as: -Location.

value The value of the attribute ID. The value requires a data
type appropriate for the argument, such as integer, string,
and so on. For data types, use the data types listed in the
NavisXtend Provisioning Server Object Attribute
Definitions. Note the following rules for values:

• For integers, specify the integer value.

• For strings, enclose the string within /” characters if it
contains special characters, such as a period or a blank
character. String values cannot begin with a hyphen.

• For enumerated types, specify the text value that
represents the integer value. In most cases, the CLI uses
an abbreviated text value.

• For Object ID, specify the Object ID that identifies the
object in the containment hierarchy (see “Managed
Objects” on page1-12).
NavisXtend Provisioning Server User’s Guide 11/16/983-3

Using the CLI
Using the CLI

Beta Draft Confidential
The sections that follow present the CLI commands in alphabetical order. Usage
examples are provided with each command. Use these examples as guidelines for
syntax and usage. The exact attributes required by a particular command vary,
depending on the type of LPort and Card specified. For additional examples, see “CLI
Examples” on page3-30.
3-411/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvadd

Beta Draft Confidential

ct.

e

he
Port

els.

 valid
cvadd

Purpose

Creates an object in the database and (optionally) in the switch. The attributes
specified by the command are used to initialize the object.

Command Syntax

cvadd object-name {-attribute-name value } . . .

Parameters

object-name specifies the object to be added. The object is specified by its object ID,
based on the containment hierarchy (for information, see “Managed Objects” on
page1-12).

-attribute-name value specifies an attribute and its value to be added to the obje
The attribute is specified by its argument name. The value uses a data type
appropriate for the argument.

Specify only those attributes and values appropriate for the object type. You can
specify any attribute except one with either the Read-Only access restriction.

Notes

For a list of object types that you can add with this command, see Table1-4 on
page1-39.

To create a card or PPort, use the Modify command (cvmodify). The NavisCore
database automatically populates each switch with cards of type “empty”. Use th
Modify command to change the card’s type from “empty” to the specified type.
Likewise, once a card has been configured, NavisCore automatically populates t
card with all necessary Physical Ports. Use the Modify command to change the P
specifications. In the case of the channelized DS3 card, once the card has been
configured, NavisCore automatically populates the card with all necessary chann
Use the Modify command to change the channel specifications.

If cvadd is successful, it prints the command name followed by the arguments that the
Provisioning Server returns. You can use this output to verify that the arguments are
the same as those specified in the original request. Any attribute that is missing a
value is a required attribute that you omitted.
NavisXtend Provisioning Server User’s Guide 11/16/983-5

Using the CLI
cvadd

Beta Draft Confidential

ort.

Port.
Examples

The following cvadd command creates an LPort:

/opt/ProvServ/bin/cvadd

Switch.1.1.1.2.card.4.pport.3.lport.1 -Name lport1 -SmdsType SsiDte

-ServiceType Smds -Bandwidth 64000 -ErrorPerMinThreshold 0

-AdminStatus Up -ErrorCheckFlag Off -HeartBPFlag On

-SmdsPduViolTcaFlag Disable -HeartBPInterval 1 -HeartBPNAThresh 1

If successful, the command returns the following text:

/opt/ProvServ/bin/cvadd Switch.1.1.1.2.card.4.pport.3.lport.1

-Name lport1 -SmdsType SsiDte -ServiceType Smds -Bandwidth

64000 -ErrorPerMinThreshold 0 -AdminStatus Up -ErrorCheckFlag

Off -HeartBPFlag On -SmdsPduViolTcaFlag Disable -HeartBPInterval

1 -HeartBPNAThresh 1

The following cvadd command creates a circuit connecting a Frame Relay LPort to a
PPPto1490 LPort:

/opt/ProvServ/bin/cvadd

-Name circuit1 Switch.1.1.1.1.card.5.pport.5.lport.5.dlci.22

-Endpoint2 Switch.1.1.1.2.card.5.pport.5.lport.5.dlci.23

-GracefulDiscard Enabled -AdminStatus Up -Priority Low

-RerouteBalance Disabled

In this example:

• The first endpoint (Switch.1.1.1.1.card.5.pport.5.lport.5) is a Frame Relay LP

• The second endpoint (Switch.1.1.1.2.card.5.pport.5.lport.5) is a PPPto1490 L
3-611/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvaddmember

Beta Draft Confidential

e

t, the

ust
er

cvaddmember

Purpose

Adds a member to an object list. Use this command to add an address to a screen or
netwide group address or to add an MLFRMember LPort to a MLFRBundle LPort.
Upon completion of the command, the address or LPort represented by the second
object parameter is added to the object specified by the first object parameter.

Command Syntax

cvaddmember object-name object-name

Parameters

object-name specifies the objects. Each object is specified by its object ID, based on
the containment hierarchy (for information, see “Managed Objects” on page1-12).
The first object-name specifies the container object.

Notes

For a list of object types that you can add with this command, see Table1-4 on
page1-39.

When you specify the object CVT_SmdsGroupScreen as the container object, th
member to be added must be either a CVT_SmdsAlienGroupAddress or a
CVT_SmdsSwitchGroupAddress.

When you specify the object CVT_SmdsIndividualScreen as the container objec
member to be added must be either a CVT_SmdsLocalIndividualAddress or a
CVT_SmdsAlienIndividualAddress.

When you specify the object CVT_SmdsNetwideGroupAddress as the container
object, the member to be added must be a CVT_SmdsLocalIndividualAddress.

When you specify the object CVT_LPort as the container object, the container m
be an MLFRBundle LPort and the member to be added must be an MLFRMemb
LPort.

If cvaddmember is successful, it prints the command name followed by the
arguments that the Provisioning Server returns. You can use this output to verify that
the arguments are the same as those specified in the original request.
NavisXtend Provisioning Server User’s Guide 11/16/983-7

Using the CLI
cvaddmember

Beta Draft Confidential
Example

The following cvaddmember command adds an SMDS local individual address to an
SMDS netwide group address:

/opt/ProvServ/bin/cvaddmember

Network.1.1.1.0.NetwideGroupAddress.1234567899

Switch.1.1.1.1.card.3.pport.4.lport.1.LocalIndividualAddress.12345

67890

If successful, the command returns the following text:

/opt/ProvServ/cvaddmember Network.1.1.1.0.NetwideGroup

Address.123456789 9 Switch.1.1.1.1.card.3.pport.4.lport.1.

LocalIndividualAddress.1234567890
3-811/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvCreateChanPerformanceMonitorId

Beta Draft Confidential

cvCreateChanPerformanceMonitorId

Purpose

Creates a CVT_ChanPerformanceMonitor object.

Command Syntax

cvCreateChanPerformanceMonitorId object-name channelID

Parameters

object-name specifies the object to be created. The object is specified by its object ID,
based on the containment hierarchy (for information, see “Managed Objects” on
page1-12).

channelID is the CvObjectId structure that specifies the channel that contains the
DS1 channel PM Threshold object. This structure is built by CvCreateChannelId.

Notes

Example

The following cvCreatePerformanceChannelMonitorId command creates a
CVT_ChanPerformanceMonitor object.:

If successful, the command returns the following text:

/opt/ProvServ/bin/cvdelete Switch.1.1.1.1.card.4.pport.1.lport.1.

dlci.16
NavisXtend Provisioning Server User’s Guide 11/16/983-9

Using the CLI
cvdelete

Beta Draft Confidential

n

. For
ses.
cvdelete

Purpose

Deletes an object from the database and (optionally) from the switch.

Command Syntax

cvdelete object-name

Parameters

object-name specifies the object to be deleted. The object is specified by its object ID,
based on the containment hierarchy (for information, see “Managed Objects” on
page1-12).

Notes

For a list of object types that you can delete with this command, see Table 1-4 on
page1-39.

You only need to delete an SMDS switch group address if the database shows a
SMDS switch group address that should not exist.

To remove a card, use the Modify command (cvmodify) to change the card’s type to
“empty”.

Some objects cannot be deleted until the objects they contain have been deleted
example, you cannot delete an LPort until you delete all of its circuits and addres

If cvdelete is successful, it prints the command name followed by the arguments that
the Provisioning Server returns. You can use this output to verify that the arguments
are the same as those specified in the original request.

Example

The following cvdelete command deletes a circuit:

/opt/ProvServ/bin/cvdelete

Switch.1.1.1.1.card.4.pport.1.lport.1.Dlci.16

If successful, the command returns the following text:

/opt/ProvServ/bin/cvdelete Switch.1.1.1.1.card.4.pport.1.lport.1.

dlci.16
3-1011/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvdeletemember

Beta Draft Confidential

e

t, the

.

ust
ber

cvdeletemember

Purpose

Deletes a member from an object list. Use this command to delete an address from a
screen or netwide group address or to unbind a MLFRMember LPort from a
MLFRBundle LPort. Upon completion of the command, the address or LPort
represented by the second object parameter is removed from the object specified by
the first object parameter.

Command Syntax

cvdeletemember object-name object-name

Parameters

object-name specifies the objects. Each object is specified by its object ID, based on
the containment hierarchy (for information, see “Managed Objects” on page1-12).
The first object-name specifies the container object.

Notes

For a list of object types that you can delete with this command, see Table 1-4 on
page1-39.

When you specify the object CVT_SmdsGroupScreen as the container object, th
member to be removed must be either a CVT_SmdsAlienGroupAddress or a
CVT_SmdsSwitchGroupAddress.

When you specify the object CVT_SmdsIndividualScreen as the container objec
member to be removed must be either a CVT_SmdsLocalIndividualAddress or a
CVT_SmdsAlienIndividualAddress.

When you specify the object CVT_SmdsNetwideGroupAddress as the container
object, the member to be removed must be a CVT_SmdsLocalIndividualAddress

When you specify the object CVT_LPort as the container object, the container m
be an MLFRBundle LPort and the member to be removed must be an MLFRMem
LPort.

If cvdeletemember is successful, it prints the command name followed by the
arguments that the Provisioning Server returns. You can use this output to verify that
the arguments are the same as those specified in the original request.
NavisXtend Provisioning Server User’s Guide 11/16/983-11

Using the CLI
cvdeletemember

Beta Draft Confidential
Example

The following cvdeletemember command removes an SMDS alien group address
from an SMDS group screen:

/opt/ProvServ/bin/cvdeletemember

Switch.1.1.1.1.card.3.pport.4.lport.1.GroupScreen

Switch.1.1.1.1.AlienGroupAddress.0009998887

If successful, the command returns the following text:

/opt/ProvServ/cvdeletemember Switch.1.1.1.1.card.3.pport.4.lport.1

.GroupScreen Switch.1.1.1.1.AlienGroupAddress.0009998887
3-1211/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvget

Beta Draft Confidential

by

rd:
cvget

Purpose

Retrieves the values of specific attributes from the database.

Command Syntax

cvget object-name {-attribute-name } . . .

Parameters

object-name specifies the object whose attributes are to be retrieved. The object is
specified by its object ID, based on the containment hierarchy (for information, see
“Managed Objects” on page 1-12).

-attribute-name specifies an attribute to be retrieved. The attribute is specified
its argument name. Specify only attribute names with no values. You can specify
up to 40 attributes.

Specify only those attributes appropriate for the object type.

Notes

For a list of object types that you can use with this command, see Table1-4 on
page1-39.

If cvget is successful, it prints the command name followed by the arguments that the
Provisioning Server returns. You can use this output to verify that the arguments are
the same as those specified in the original request.

Examples

The following cvget command retrieves the type and administrative status of a ca

/opt/ProvServ/bin/cvget

Switch.1.1.1.1.card.4 -DefinedType -AdminStatus

If successful, the command returns the following text:

/opt/ProvServ/bin/cvget Switch.1.1.1.1.card.4 -DefinedType

1PortAtmDs3Uni

-AdminStatus Up

The following cvget command retrieves the location of a switch:

/opt/ProvServ/bin/cvget Switch.152.148.50.2 -Location
NavisXtend Provisioning Server User’s Guide 11/16/983-13

Using the CLI
cvget

Beta Draft Confidential
If successful, the command returns the following text:

/opt/ProvServ/bin/cvget Switch.152.148.50.2

-Location “XYZ Corporation”
3-1411/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvgetdiag

Beta Draft Confidential

by

n
cvgetdiag

Purpose

Retrieves the values of specific diagnostic information from the Provisioning Server.

Command Syntax

cvgetdiag object-name {-attribute-name } . . .

Parameters

object-name specifies the object whose attributes are to be retrieved. The object is
specified by its object ID, based on the containment hierarchy (for information, see
“Managed Objects” on page 1-12).

-attribute-name specifies an attribute to be retrieved. The attribute is specified
its argument name. Specify only attribute names with no values.

Specify only those attributes appropriate for the object type.

Notes

For a list of object types that you can use with this command, see Table1-4 on
page1-39.

If cvgetdiag is successful, it prints the command name followed by the arguments that
the Provisioning Server returns. You can use this output to verify that the arguments
are the same as those specified in the original request.

Examples

The following cvgetdiag command retrieves LoopbackStatus diagnostic informatio
from the Provisioning Server:

/opt/ProvServ/bin/cvgetdiag

Switch.1.1.1.1.card.4.pport.1 -LoopbackStatus
NavisXtend Provisioning Server User’s Guide 11/16/983-15

Using the CLI
cvgetoperinfo

Beta Draft Confidential

by
cvgetoperinfo

Purpose

Retrieves the values of specific real time operational information from the switch.

Command Syntax

cvgetoperinfo object-name {-attribute-name } . . .

Parameters

object-name specifies the object whose attributes are to be retrieved. The object is
specified by its object ID, based on the containment hierarchy (for information, see
“Managed Objects” on page 1-12).

-attribute-name specifies an attribute to be retrieved. The attribute is specified
its argument name. Specify only attribute names with no values.

Specify only those attributes appropriate for the object type.

Notes

For a list of object types that you can use with this command, see Table1-4 on
page1-39.

If cvgetoperinfo is successful, it prints the command name followed by the arguments
that the Provisioning Server returns. You can use this output to verify that the
arguments are the same as those specified in the original request.

Examples

The following cvgetoperinfo command retrieves real time PvcDelay information
from the Provisioning Server:

/opt/ProvServ/bin/cvgetoperinfo

Switch.1.1.1.1.card.4.pport.1.lport.1.dlci.100 -PvcDelay
3-1611/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvhelp

Beta Draft Confidential
cvhelp

Purpose

Provides usage help for the CLI.

Command Syntax

cvhelp { object-type -attribute-name }

Parameters

object-type specifies the object type (such as LPort, circuit, etc.) for which you want to
print supported attributes or enumerated attribute values.

-attribute-name specifies an enumerated attribute for which you want to print
supported enumerated values printed.

Notes

Issue cvhelp without arguments to print a command usage statement for each of the
CLI commands.

Issue cvhelp with the object-type argument to print the attribute IDs and attribute
types (such as INTEGER, STRING, and so on) that are supported for the specified
object.

Issue cvhelp with the object-type and -attribute-name arguments to print the
enumerated attribute values that are supported for the specified attribute and object.

Examples

The following cvhelp command prints a usage statement for each of the CLI
commands:

/opt/ProvServ/bin/cvhelp

The following cvhelp command prints a list of all attributes supported for cards:

/opt/ProvServ/bin/cvhelp card

The following cvhelp command prints a list of all enumerated attribute values
supported for the enumerated attribute CVA_LPortSmdsType belonging to the object
LPort:

/opt/ProvServ/bin/cvhelp lport -smdstype
NavisXtend Provisioning Server User’s Guide 11/16/983-17

Using the CLI
cvlistallcontained

Beta Draft Confidential

g
ch

be
cvlistallcontained

Purpose

Queries the database for a list of objects of any type that are immediate children of a
specified object.

Command Syntax

cvlistallcontained object-name

Parameters

object-name specifies the parent object that represents the immediate parent of the
contained objects (such as a PPort that is a parent of multiple LPorts). The object is
specified by its object ID, based on the containment hierarchy (for information, see
“Managed Objects” on page 1-12).

Notes

You can issue the function on either:

Network level — The function retrieves a list of objects on a network, includin
all subnets. To issue the function on a network level, specify an IP address, su
as 128.100.0.0.

Subnet level — The function retrieves a list of objects on a particular subnet. To
issue the function on a subnet level, specify an IP address with a subnet numr,
such as 128.100.111.0.

Table3-1 lists the valid parent and child object types you can specify with this
command.

Table 3-1. Valid Parent and Child Object Types

Parent Object Type Child Object Types

Card CardTca
PPort

Channel ChanPerformanceMonitor
LPort
PerformanceMonitor

Customer Circuit
LPort
3-1811/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvlistallcontained

Beta Draft Confidential
LPort AssignedSvcSecScn
Circuit
LPort (only for listing MLFR Members on an
MLFR Bundle)
PMPCktRoot
PMPSpvcRoot
SmdsGroupScreen
SmdsIndividualScreen
SmdsLocalIndividualAddress
Spvc
SvcAddress
SvcConfig
SvcNetworkId
SvcPrefix
SvcSecScnActParam
SvcUserPart
VpciTable

Network Customer
NetCac
ServiceName
SmdsCountryCode
SmdsNetwideGroupAddress
SvcCUG
SvcCUGMbrRule
SvcSecScn
Switch
TrafficDesc
Trunk
VPN

PMPCktRoot PMPCktLeaf

PMPSpvcRoot PMPSpvcLeaf

PPort Aps (1-port OC-12c/STM-4 and 4-port
OC-3/STM-1 cards only)
Channel
ChanPerformanceMonitor
LPort
PerformanceMonitor
PFdl (8-port ATM T1 card only)
PPortTca
TrafficShaper

ServiceName Circuit

SmdsGroupScreen SmdsAlienGroupAddress
SmdsSwitchGroupAddress

SmdsIndividualScreen SmdsAlienIndividualAddress
SmdsLocalIndividualAddress

Table 3-1. Valid Parent and Child Object Types (Continued)

Parent Object Type Child Object Types
NavisXtend Provisioning Server User’s Guide 11/16/983-19

Using the CLI
cvlistallcontained

Beta Draft Confidential
If cvlistallcontained is successful, it prints the command name followed by the child
objects that the Provisioning Server returns. It prints out one line for each child object.
The command does not print any attributes for the listed objects.

Example

The following cvlistallcontained command lists all immediate children of a switch:

cvlistallcontained switch.1.1.1.1

If successful, the command returns the following text:

cvlistallcontained Switch.1.1.1.1.card.1

cvlistallcontained Switch.1.1.1.1.card.2

cvlistallcontained Switch.1.1.1.1.card.3

cvlistallcontained Switch.1.1.1.1.card.4

cvlistallcontained Switch.1.1.1.1.card.5

cvlistallcontained Switch.1.1.1.1.card.6

cvlistallcontained Switch.1.1.1.1.card.7

cvlistallcontained Switch.1.1.1.1.card.8

cvlistallcontained Switch.1.1.1.1.SwitchGroupAddress.8889998889

cvlistallcontained Switch.1.1.1.1.AddressPrefix.123456

cvlistallcontained Switch.1.1.1.1.AddressPrefix.222333

cvlistallcontained Switch.1.1.1.1.AddressPrefix.890890

cvlistallcontained Switch.1.1.1.1.AddressPrefix.999000

cvlistallcontained

Switch.1.1.1.1.AlienIndividualAddress.8889998887

cvlistallcontained Switch.1.1.1.1.AlienGroupAddress.0009998887

SmdsNetwideGroupAddress SmdsLocalIndividualAddress
SmdsSwitchGroupAddress

SvcCUG SvcCUGMbr

SvcCUGMbrRule SvcCUGMbr

Switch Card
PnniNode
RefTimeServer
SmdsAddressPrefix
SmdsAlienGroupAddress
SmdsAlienIndividualAddress
SmdsSwitchGroupAddress
SvcNodePrefix

Trunk Circuit

VPN Circuit
LPort

Table 3-1. Valid Parent and Child Object Types (Continued)

Parent Object Type Child Object Types
3-2011/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvlistcontained

Beta Draft Confidential

ts to

 is

g
ch

be
cvlistcontained

Purpose

Queries the database for a list of objects of a specified type that are children of a
specified object. The children can be positioned anywhere in the containment
hierarchy of the root object.

Command Syntax

cvlistcontained object-name object-type {-attribute-name } . . .

Parameters

object-name specifies the parent object. The parent object can be the immediate
parent of the contained objects (such as a PPort that is a parent of multiple
LPorts). Or, the parent object can be positioned higher in the containment
hierarchy (such as a switch that is a parent of multiple LPorts). The object is
specified by its object ID, based on the containment hierarchy (for information, see
“Managed Objects” on page 1-12).

object-type specifies the enumerated value that specifies the type of the objec
be retrieved.

-attribute-name specifies an attribute to be retrieved for the object. The attribute
specified by its argument name. Specify only attribute names with no values. You
can specify up to 40 attributes.

Specify only those attributes appropriate for the object type.

If you want all attributes to be retrieved, omit the -attribute-name argument. The
command returns all readable attributes for the child objects.

Notes

You can issue the function on either:

Network level — The function retrieves a list of objects on a network, includin
all subnets. To issue the function on a network level, specify an IP address, su
as 128.100.0.0.

Subnet level — The function retrieves a list of objects on a particular subnet. To
issue the function on a subnet level, specify an IP address with a subnet numr,
such as 128.100.111.0.

Table3-2 lists the valid parent and child object types you can specify with this
command.
NavisXtend Provisioning Server User’s Guide 11/16/983-21

Using the CLI
cvlistcontained

Beta Draft Confidential
Table 3-2. Valid Parent and Child Object Types

Parent Object Type Child Object Types

Card Aps
CardTca
Channel
Circuit
LPort
Performance Monitor
PFdl
PMPSpvcRoot
PPort
Spvc
SmdsAlienGroupAddress
SmdsAlienIndividualAddress
SmdsGroupScreen
SmdsIndividualScreen
SmdsLocalIndividualAddress
SmdsSwitchGroupAddress
SvcConfig
SvcNodePrefix
SvcUserPart
Trunk

Channel Circuit
LPort
Performance Monitor
Trunk

Customer Circuit
LPort

LPort AssignedSvcSecScn
Circuit
PMPCktRoot
PMPSpvcRoot
SmdsGroupScreen
SmdsIndividualScreen
SmdsLocalIndividualAddress
Spvc
SvcAddress
SvcConfig
SvcNetworkId
SvcPrefix
SvcSecScnActParam
SvcUserPart
VpciTable
Trunk
3-2211/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvlistcontained

Beta Draft Confidential
Network Circuit
Customer
NetCac
PMPCktLeaf
PMPCktRoot
PMPSpvcRoot
ServiceName
SmdsAddressPrefix
SmdsCountryCode
SmdsLocalIndividualAddress
SmdsNetwideGroupAddress
SvcCUG
SvcCUGMbrRule
SvcSecScn
Switch
TrafficDesc
Trunk
VPN

PMPCktRoot PMPCktLeaf

PMPSpvcRoot PMPSpvcLeaf

PPort Aps (1-port OC-12c/STM-4 and 4-port
OC-3/STM-1 cards only)
Channel
Circuit
LPort
PerformanceMonitor
PFdl (8-port ATM T1 card only)|
PMPCktRoot
PMPSpvcRoot
PPortTca
Spvc
TrafficShaper
Trunk

SmdsGroupScreen SmdsAlienGroupAddress
SmdsSwitchGroupAddress

SmdsIndividualScreen SmdsAlienIndividualAddress
SmdsLocalIndividualAddress

SmdsNetwideGroupAddress SmdsLocalIndividualAddress
SmdsSwitchGroupAddress

SvcCUG SvcCUGMbr

SvcCUGMbrRule SvcCUGMbr

Table 3-2. Valid Parent and Child Object Types (Continued)

Parent Object Type Child Object Types
NavisXtend Provisioning Server User’s Guide 11/16/983-23

Using the CLI
cvlistcontained

Beta Draft Confidential
If cvlistcontained is successful, it prints the command name followed by the child
objects that the Provisioning Server returns. It prints one line for each child object and
includes attributes and values.

Example

The following cvlistcontained command lists all LPorts on a given switch by their
Names:

cvlistcontained switch.1.1.1.2 lport -Name

If successful, the command returns the following text:

cvlistcontained Switch.1.1.1.2.card.4.pport.2.lport.1 -Name lport1

cvlistcontained Switch.1.1.1.2.card.4.pport.1.lport.1 -Name lport2

cvlistcontained Switch.1.1.1.2.card.4.pport.3.lport.1 -Name lport3

Switch Aps
Card
Channel
Circuit
LPort
Performance Monitor
PFdl
PMPCktRoot
PMPSpvcRoot
PnniNode
PPort
RefTimeServer
SmdsAddressPrefix
SmdsAlienGroupAddress
SmdsAlienIndividualAddress
SmdsGroupScreen
SmdsIndividualScreen
SmdsLocalIndividualAddress
SmdsSwitchGroupAddress
Spvc
SvcAddress
SvcConfig
SvcNodePrefix
SvcPrefix
SvcUserPart
Trunk

Trunk Circuit

VPN Circuit
LPort
Trunk

Table 3-2. Valid Parent and Child Object Types (Continued)

Parent Object Type Child Object Types
3-2411/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvmodify

Beta Draft Confidential

ate

ss

as

ally
cvmodify

Purpose

Modifies specific attributes of an object in the database and (optionally) in the switch.

Command Syntax

cvmodify object-name {-attribute-name value } . . .

Parameters

object-name specifies the object to be modified. The object is specified by its object
ID, based on the containment hierarchy (for information, see “Managed Objects” on
page1-12).

-attribute-name value specifies an attribute and its value to be modified. The
attribute is specified by its argument name. The value uses a data type appropri
for the argument.

Specify only those attributes and values appropriate for the object type. You can
specify any attribute except those with either the Read-Only or Create-Only acce
restriction.

Notes

For a list of object types that you can use with this command, see Table1-4 on
page1-39.

You can use this command to create a card or PPort. The NavisCore database
automatically populates each switch with cards of type “empty”. Use cvmodify to
change the card’s type from “empty” to the specified type. Likewise, once a card h
been configured, NavisCore automatically populates the card with all necessary
Physical Ports. Use cvmodify to change the PPort specifications. In the case of the
channelized DS3 card, once the card has been configured, NavisCore automatic
populates the card with all necessary channels. Use cvmodify to change the channel
specifications.

You can use this command to remove a card. Use cvmodify to change the card’s type
to “empty”.

If cvmodify is successful, it prints the command name followed by the arguments that
the Provisioning Server returns. You can use this output to verify that the arguments
are the same as those specified in the original request.
NavisXtend Provisioning Server User’s Guide 11/16/983-25

Using the CLI
cvmodify

Beta Draft Confidential
Example

The following cvmodify command creates a card by specifying its type and
administrative status:

/opt/ProvServ/bin/cvmodify Switch.1.1.1.1.card.4 -DefinedType

1PortAtmDs3Uni -AdminStatus Up

If successful, the command returns the following text:

/opt/ProvServ/bin/cvmodify Switch.1.1.1.1.card.4

-DefinedType 1PortAtmDs3Uni

-AdminStatus Up
3-2611/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvstartdiag

Beta Draft Confidential

by
cvstartdiag

Purpose

Starts diagnostics on an object in the network.

Command Syntax

cvstartdiag object-name {-attribute-name } . . .

Parameters

object-name specifies the object whose attributes are to be retrieved. The object is
specified by its object ID, based on the containment hierarchy (for information, see
“Managed Objects” on page 1-12).

-attribute-name specifies an attribute to be retrieved. The attribute is specified
its argument name. The value uses a data type appropriate for the argument.

Specify only those attributes appropriate for the object type.

Notes

For a list of object types that you can use with this command, see Table1-4 on
page1-39.

If cvstartdiag is successful, it prints the command name followed by the arguments
that the Provisioning Server returns. You can use this output to verify that the
arguments are the same as those specified in the original request.

Examples

The following cvstartdiag command starts diagnostics:

/opt/ProvServ/bin/cvstartdiag

Switch.1.1.1.1.card.4.pport.1 -TestType internal
NavisXtend Provisioning Server User’s Guide 11/16/983-27

Using the CLI
cvstopdiag

Beta Draft Confidential
cvstopdiag

Purpose

Stops diagnostics on an object in the network.

Command Syntax

cvstopdiag object-name

Parameters

object-name specifies the object whose attributes are to be retrieved. The object is
specified by its object ID, based on the containment hierarchy (for information, see
“Managed Objects” on page 1-12).

Notes

For a list of object types that you can use with this command, see Table1-4 on
page1-39.

If cvstopdiag is successful, it prints the command name followed by the arguments
that the Provisioning Server returns. You can use this output to verify that the
arguments are the same as those specified in the original request.

Examples

The following cvstopdiag command stops diagnostics:

/opt/ProvServ/bin/cvstopdiag

Switch.1.1.1.1.card.4.pport.1
3-2811/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
cvupdatediag

Beta Draft Confidential

e

ch:
cvupdatediag

Purpose

Modifies diagnostic parameters on the switch for an object being diagnosed on the
network.

Command Syntax

cvupdatediag object-name {-attribute-name } . . .

Parameters

object-name specifies the object whose attributes are to be retrieved. The object is
specified by its object ID, based on the containment hierarchy (for information, see
“Managed Objects” on page 1-12).

-attribute-name specifies an attribute fand its value to be used for setting up th
diagnostics.. The attribute is specified by its argument name. The value uses a
data type appropriate for the argument.

Specify only those attributes appropriate for the object type.

Notes

For a list of object types that you can use with this command, see Table1-4 on
page1-39.

If cvupdatediag is successful, it prints the command name followed by the arguments
that the Provisioning Server returns. You can use this output to verify that the
arguments are the same as those specified in the original request.

Examples

The following cvupdatediag command modifies diagnostic parameters on the swit

/opt/ProvServ/bin/cvupdatediag

Switch.1.1.1.1.card.4.pport.1 -TestType clearcounter
NavisXtend Provisioning Server User’s Guide 11/16/983-29

Using the CLI
CLI Examples

Beta Draft Confidential

Port
r,

ame
 entire

 SVC

*)
CLI Examples

This section provides usage examples of each of the managed objects. Use these
examples as guidelines for syntax and usage.

Sample CLI Format

Conventions used in the samples are as follows:

<ip_address> — Represents an IP address, such as 130.2.20.1.

<network_no> — Represents a network number.

<id> — Represents any numeric number representation, such as card number, P
number, LPort number, channel number, DLCI number, VPI number, VCI numbe
PMPSpvcLeaf number, country code number, and so on. There is no relationship
among the values for these numbers.

<name> — Represents a name string, such as the customer name string, Traffic
Descriptor name string, VPN name string, switch name, and so on. If the string n
contains a special character (such as a period or a blank character), enclose the
string within /” characters. For example:

/”my switch/”

<svc_string> — Represents an address string that conforms to the convention for
addresses.

<svccug_string> — Represents an SVC CUG string.

<rule_string> — Represents an SVC CUG member rule string.

<peer_group_string> — Represents an Peer Group string.

{-Attribute value}* — Represents the applicable attribute-value pair. An asterisk (
indicates that you can specify multiple attribute-value pairs.

CVT_APS

There is no identifier for APS.

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> aps

cvget switch.<ip_address>.card.<id>.pport.<id>.aps {-Attribute}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.aps {-Attribute value}*

CVT_AssignedSvcSecScn

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> assignedsvcsecscn
3-3011/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
CLI Examples

Beta Draft Confidential

e
ding
datory

CVT_Card
cvlistcontained switch.<ip_address> card

cvmodify switch.<ip_address>.card.<id> {-Attribute value}*

CVT_CardTca

cvmodify switch.<ip_address>.card.<id>.cardtca {-Attribute value}*

CVT_Channel
cvget switch.<ip_address>.card.<id>.pport.<id>.channel.<id> {-Attribute }*

CVT_Circuit

Circuits are always identified by their endpoints. An endpoint can be an LPort or a
ServiceName; the object ID representation differs accordingly.

In the case of LPorts, endpoints are represented differently according to different
service types for the containing LPort. For Frame Relay, an endpoint is identified by
DLCI number; for ATM, an endpoint is identified by the VPI, VCI pair. Specify the
first endpoint as the main object identifier in the CLI command. Specify the second
endpoint as an mandatory attribute to the first endpoint (using “-Endpoint2”).

In the case of ServiceName, the endpoint is identified by the network number, th
name of the ServiceName binding, and the VPI/VCI pair or DLCI number (depen
on endpoint type). As with LPorts, the second endpoint is represented as an man
attribute to the first endpoint using “-Endpoint2.”

ServiceName Endpoints

cvadd network.<network_no>.servicename.<name>.vpi.<id>.vci.<id> {-Attribute value}*

cvadd network.<network_no>.servicename.<name>.dlci.<id> {-Attribute value}*

On a GX 550 switch, PPort IDs are fixed on a subcard. If you are provisioning
this switch model, be sure to specify the fixed PPort ID. See “GX 550 Support”
in Software Release Notice for NavisXtend Provisioning Server included with
this release for information about creating Circuits on the GX 550 switch.
NavisXtend Provisioning Server User’s Guide 11/16/983-31

Using the CLI
CLI Examples

Beta Draft Confidential
LPort Endpoints

ATM - ATM circuit:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.vpi.<id>.vci.<id> {-Attribute value}*
switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.vpi.<id>.vci.<id>

ATM - Frame Relay circuit:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.vpi.<id>.vci.<id> {-Attribute value}*
switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.dlci<id>

cvadd Switch.100.100.100.5.card.13.pport.5.lport.1.vpi.4.vci.76
 -Name fr_to_atm -FwdRateEnfScheme Simple -RevRateEnfScheme Jump
 -FwdZeroCIR Off -RevZeroCIR Off -FwdQOSClass VBRNonRealTime
 -FwdTrafficDescType PcrClp01ScrClp0MbsClp0Tag
 -RevQOSClass VBRRealTime -NdcEnable1 On
 -TrafficMgmtCtdStatus Enabled
 -Alias fr_to_atm -FwdParam1 100 -FwdParam2 100 -FwdParam3 100
 -Cir2 128000 -Bc2 128000 -Be2 64000 -Priority 1
 -RevPriority 1 -GracefulDiscard On -RevGracefulDiscard On -RevDeltaBc 1024
 -RevDeltaBe 2048 -AdminStatus Up -Loopback2 Normal -RerouteBalance Enabled
 -Endpoint2
Switch.100.100.100.8.card.3.pport.1.channel.2.lport.1.dlci.57
 -BandwidthPriority 0 -BumpingPriority 0 -FwdFcpDiscard CLP1
-RevFcpDiscard CLP1
 -UpcFunction Enabled -CdvTolerance 600 -OamAlarms Enabled
-TranslationType 1483and1490
 -CLP fr_de -DE atm_clp -RevRedFramePercent 100 -VpnName Public
 -CustomerName Public -PrivNetOverflow Public -Clp0CellThresh1 150135
 -Clp1CellThresh1 150135 -AcctChrgPartyId1 35 -AcctUsageMeasure1 Enabled
 -AcctPvcControl1 Enabled -FrPvcParamRecording2 Disabled
-FrAcctPvcControl2 Enabled
 -FrAcctChrgPartyId2 35 -FrAcctUsageMeasure2 All -TrafficMgmtCtd 11
 -FrToAtmEFCI Fr-Fecn -IsMgmtCkt True -AdminCost 10

Frame Relay - Frame Relay circuit:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.dlci.<id> {-Attribute value}*
switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.dlci<id>

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> circuit

cvadd Switch.100.100.100.8.card.3.pport.1.channel.2.lport.1.dlci.456
 -Name fr_to_fr -FwdRateEnfScheme Simple -RevRateEnfScheme Jump
 -FwdZeroCIR On -RevZeroCIR Off -FwdQOSClass UBR
 -RevQOSClass VBRNonRealTime -TrafficMgmtCtdStatus Enabled -Alias fr_to_fr
 -Cir2 256000 -Bc2 256000 -Be2 16000 -RevPriority 1
 -GracefulDiscard On -RevGracefulDiscard On -RevDeltaBc 65528
 -RevDeltaBe 65528 -AdminStatus Up -Loopback1 Normal
 -Loopback2 Normal -RerouteBalance Enabled
 -Endpoint2
Switch.100.100.100.8.card.3.pport.1.channel.2.lport.1.dlci.475
 -BandwidthPriority 15 -BumpingPriority 7 -FwdFcpDiscard EPD
 -RevFcpDiscard CLP1 -RevRedFramePercent 75 -VpnName Public
3-3211/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
CLI Examples

Beta Draft Confidential
 -CustomerName Public -PrivNetOverflow Public -FrPvcParamRecording1
Disabled
 -FrPvcParamRecording2 Disabled -FrAcctPvcControl1 Enabled
-FrAcctPvcControl2 Enabled
 -FrAcctChrgPartyId1 45 -FrAcctChrgPartyId2 45
-FrAcctUsageMeasure1 FramesAndDeBytes
 -FrAcctUsageMeasure2 BytesAndDeBytes -TrafficMgmtCtd 10 -IsMgmtCkt False
 -AdminCost 100

cvadd Switch.100.100.100.5.card.13.pport.5.lport.1.vpi.3.vci.234
 -Name atm_to_atm -FwdQOSClass CBR -FwdTrafficDescType
PcrClp0PcrClp01Tag
 -RevQOSClass ABR -RevTrafficDescType PcrClp0McrClp0 -NdcEnable1 On
 -NdcEnable2 On -TrafficMgmtCtdStatus Disabled
-TrafficMgmtFwdCdvStatus Enabled
 -TrafficMgmtFwdClrStatus Enabled -Alias atm_to_atm -FwdParam1 100
 -FwdParam2 100 -RevParam1 100 -RevParam2 100 -RevPriority 1
 -AdminStatus Up -RerouteBalance Enabled
 -Endpoint2 Switch.100.100.100.5.card.13.pport.5.lport.1.vpi.7.vci.432
 -BandwidthPriority 0 -BumpingPriority 0 -FwdFcpDiscard CLP1
 -RevFcpDiscard CLP1 -UpcFunction Enabled -CdvTolerance 600
 -OamAlarms Enabled -VpnName Public -CustomerName Public
 -PrivNetOverflow Public -Clp0CellThresh1 300270 -Clp1CellThresh1
300270
 -Clp0CellThresh2 150135 -Clp1CellThresh2 300270 -AcctChrgPartyId1 56
 -AcctUsageMeasure1 Egress -AcctPvcControl1 Disabled
-AcctChrgPartyId2 56
 -AcctUsageMeasure2 Ingress -AcctPvcControl2 Study -TrafficMgmtFwdCdv 20
 -TrafficMgmtFwdClr 5 -IsMgmtCkt True -FwdFrameDiscardStatus Enabled
 -RevFrameDiscardStatus Enabled -AdminCost 0

CVT_Customer
cvlistcontained network.< ip_address> customer

cvget network.<ip_address>.customer.<name> {-Attribute }*

CVT_DefinedPath

cvget switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.dlci<id>.definedpath {-Attribute }*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.vpi<id>.vci<id>.definedpath
{-Attribute }*

CVT_LPort

Normal LPort type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.lport.<id> {-Attribute value}*

cvget switch.<ip_address>.card.<id>.pport.<id>.lport.<id> {-Attribute }*
NavisXtend Provisioning Server User’s Guide 11/16/983-33

Using the CLI
CLI Examples

Beta Draft Confidential
ATM Virtual UNI LPort type:

The LPort number is generated automatically from the Start VPI number and the
LPort interface number. Therefore, during creation, you do not need to provide an
LPort number. To retrieve information for the LPort, you must specify its LPort
number. To obtain this number, use cvlistcontained.

cvadd switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id> {-Attribute value}*

cvget switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id> {-Attribute }*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> lport

ATM Network Interworking for Frame Relay NNI LPort type:

The LPort number is identified by VPI/VCI pair.

cvadd switch.<ip_address>.card.<id>.pport.<id>.vpi.<id>.vci.<id> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.vpi.<id>.vci.<id> {-Attribute value}*

cvget switch.<ip_address>.card.<id>.pport.<id>.vpi.<id>.vci.<id> {-Attribute }*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> lport

MLFRBundle LPort type:

The LPort is identified by card, not by PPort.

cvadd switch.<ip_address>.card.<id>.lport.<id> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.lport.<id> {-Attribute value}*

The following command lists all the MLFRMember LPorts bound to the specified
MLFRBundle LPort:

cvlistcontained switch.<ip_address>.card.<id>.lport.<id> lport

MLFRMember LPort type:

The LPort is identified by PPort.

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.lport.<id> {-Attribute value}*

The following command binds a member to a bundle LPort, where both LPort are on
the same PPort of the same card:

cvaddmember switch.<ip_address>.card.<id>.lport.<id>
switch.<ip_address>.card.<id>.pport.<id>.lport.<id>

The following command unbinds a member from a bundle LPort:

cvdeletemember switch.<ip_address>.card.<id>.lport.<id>
switch.<ip_address>.card.<id>.pport.<id>.lport.<id>
3-3411/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
CLI Examples

Beta Draft Confidential

CVT_NetCac

There is no identifier for NetCac.

cvlistcontained network.<ip_address> netcac

cvmodify network.<ip_address>.netcac {-Attribute value}*

CVT_PerformanceMonitor

There is no identifier for PerformanceMonitor.

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> pm

cvget switch.<ip_address>.card.<id>.pport.<id>.pm {-Attribute }*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.pm {-Attribute value}*

CVT_PFdl

There is no identifier for PFdl.

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> fdl

cvget switch.<ip_address>.card.<id>.pport.<id>.fdl {-Attribute }*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.fdl {-Attribute value}*

CVT_PMPCkt

A PMP circuit leaf can be added only when a PMPCktRoot exists. The circuit type of
a leaf must be the same as that of the root. For example, if the PMPCktRoot has been
created without specifying the VCI value, all the leaves to be added to that particular
root should not have their VCI value specified.

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpcktleaf.vpi.<id>.vci.<id>
{-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpcktroot.vpi.<id>.vci.<id>
pmpcktleaf

CVT_PMPCktRoot

For VCC circuit type:

On a GX 550 switch, PPort IDs are fixed on a subcard. If you are provisioning
this switch model, be sure to specify the fixed PPort ID. See “GX 550 Support”
in Software Release Notice for NavisXtend Provisioning Server included with
this release for information about creating LPorts on the GX 550 switch.
NavisXtend Provisioning Server User’s Guide 11/16/983-35

Using the CLI
CLI Examples

Beta Draft Confidential
cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpcktroot.vpi.<id>.vci.<id> {-Attribute
value}*

For VPC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpcktroot.vpi.<id> {-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> pmpcktroot

CVT_PMPSpvcLeaf

A PMPSpvc circuit leaf can be added only when a PMPSpvcRoot exists.

For PMPSpvcLeaf objects, specify the Root parent as part of the object ID
representation. For example:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpspvcroot.vpi.<id>[.vci.<id>].
pmpspvcleaf.<id> {-Attribute value}*

You no longer need to specify the Root object as one of the attributes.

You must specify the correct instance number when you perform a cvadd, cvget,
cvmodify, or cvdelete. To retrieve the correct instance number from the database, use
the attribute CVA_PMPSpvcRootNextAvailableLeafNo.

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpspvcroot.vpi.<id>.vci.<id>
pmpspvcleaf

CVT_PMPSpvcRoot

For VCC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpspvcroot.vpi.<id>.vci.<id>
{-Attribute value}*
3-3611/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
CLI Examples

Beta Draft Confidential
For VPC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpspvcroot.vpi.<id> {-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id> pmpspvcroot

CVT_PnniNode

cvadd switch.<ip_address>.pnninode.<peer_group_string> {-Attribute value}*

cvget switch.<ip_address>.pnninode.<peer_group_string> {-Attribute }*

cvmodify switch.<ip_address>.pnninode.<peer_group_string> {-Attribute value}*

CVT_PPort
cvlistcontained switch.<ip_address>.card.<id> pport

cvget switch.<ip_address>.card.<id>.pport.<id> {-Attribute }*

CVT_PPortTca

cvmodify switch.<ip_address>.card.<id>.pport.<id>.pporttca {-Attribute value}*

CVT_RefTimeServer

cvadd switch.<ip_address>.reftimeserver.<ip_address> {-Attribute value}*

cvmodify switch.<ip_address>.reftimeserver.<ip_address> {-Attribute value}*

cvlistcontained switch.<ip_address> reftimeserver

CVT_ServiceName
cvadd network.<ip_address>.servicename.<name> {-Attribute value}*

cvmodify network.<ip_address>.servicename.<name> {-Attribute value}*

cvlistcontained network.<ip_address> servicename

CVT_SmdsAddressPrefix
cvlistcontained switch.<ip_address> addressprefix

CVT_SmdsAlienGroupAddress
cvlistcontained switch.<ip_address> aliengroupaddress

CVT_SmdsAlienIndividualAddress
cvlistcontained switch.<ip_address> alienindividualaddress
NavisXtend Provisioning Server User’s Guide 11/16/983-37

Using the CLI
CLI Examples

Beta Draft Confidential
CVT_SmdsCountryCode
cvadd network.<ip_address>.countrycode.<id> {-Attribute value}

CVT_SmdsGroupScreen
cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> groupscreen

CVT_SmdsIndividualScreen
cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> individualscreen

CVT_SmdsLocalIndividualAddress
cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> localindividualaddress

CVT_SmdsNetwideGroupAddress
cvlistcontained network.<ip_address> netwidegroupaddress

CVT_SmdsSwitchGroupAddress
cvlistcontained switch. <ip_address> switchgroupaddress

CVT_Spvc

For VCC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.spvc.vpi.<id>.vci.<id> {-Attribute value}*

For VPC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.spvc.vpi.<id> {-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id> spvc

CVT_SvcAddress

An SvcAddress is represented by a string that conforms to the convention used to
specify SVC addresses. The format of the cvadd, cvmodify, cvget, or cvdelete
command depends on the format of the SVC address.

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>. svcaddress.<svc_string>
{-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> svcaddress

See the CVT_LPort object description for sample formats that specify other LPort
types.
3-3811/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
CLI Examples

Beta Draft Confidential
CVT_SvcConfig
cvmodify switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.svcconfig {-Attribute value}*

CVT_SvcCUG

No attributes are needed for addition.

cvadd network.<ip_address>.svccug.<svccug_string>

cvlistcontained network. <ip_address> svccug

CVT_SvcCUGMbr
cvadd network.<ip_address>.svccug.<svccug_string>.svccugmbr.<rule_string> {-Attribute value}*

cvlistcontained network.<ip_address>.svccug.<svccug_string> svccugmbr

CVT_SvcCUGMbrRule
cvadd network.<ip_address>.svccugmbrrule.<rule_string> {-Attribute value}*

cvlistcontained network.<ip_address>.svccugmbrrule

CVT_SvcNetworkId

Normal LPort type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.svcnetworkid.<svc_str> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.svcnetworkid.<svc_str>
{-Attribute value}*

cvget switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.svcnetworkid.<svc_str> {-Attribute }*

ATM Virtual UNI LPort type:

The LPort number is generated automatically from the Start VPI number and the
LPort interface number. Therefore, during creation, you do not need to provide an
LPort number. To retrieve information for the LPort, you must specify its LPort
number. To obtain this number, use cvlistcontained.

cvadd switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id>.svcnetworkid.<svc_str>
{-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id>.svcnetworkid.<svc_str>
{-Attribute value}*

cvget switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id>.svcnetworkid.<svc_str> {-Attribute }*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id>.svcnetworkid
{-Attribute value}*
NavisXtend Provisioning Server User’s Guide 11/16/983-39

Using the CLI
CLI Examples

Beta Draft Confidential
See the CVT_LPort object description for sample formats that specify other LPort
types.

CVT_SvcNodePrefix

An SvcNodePrefix is represented by a string that conforms to the convention used to
specify SVC addresses. The format of the cvadd, cvmodify, cvget, or cvdelete
command depends on the format of the SVC address.

cvadd switch.<ip_address>.svcnodeprefix.<svc_string> {-Attribute value}*

cvlistcontained switch.<ip_address> svcnodeprefix

CVT_SvcPrefix

An SvcPrefix is represented by a string that conforms to the convention used to
specify SVC addresses. The format of the cvadd, cvmodify, cvget, or cvdelete
command depends on the format of the SVC address.

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.svcprefix.<svc_string> {-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> svcprefix

See the CVT_LPort object description for sample formats that specify other LPort
types.

CVT_SvcSecScn
cvlistcontained network.<ip_address> svcsecscn

CVT_SvcSecScnActParam
cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> svcsecscnactparam

CVT_SvcUserPart

An SvcUserPart is represented by a string that conforms to the convention used to
specify SVC addresses. The format of the cvadd, cvget, or cvdelete command
depends on the format of the SVC address.

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>. svcuserpart.<svc_string>

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> svcuserpart

See the CVT_LPort object description for sample formats that specify other LPort
types.

CVT_Switch
cvlistcontained network.<ip_address> switch
3-4011/16/98 NavisXtend Provisioning Server User’s Guide

Using the CLI
CLI Examples

Beta Draft Confidential
CVT_TrafficDesc
cvadd network.<ip_address>.trafficdesc.<name> {-Attribute value}*

cvlistcontained network.<ip_address> trafficdesc

CVT_TrafficShaper
cvlistcontained switch.<ip_address>.card.<id>.pport.<id> ts

cvget switch.<ip_address>.card.<id>.pport.<id>.ts.<id> {-Attribute }*

CVT_Trunk

cvget network.<ip_address>.trunkname.<name> {-Attribute }*

cvlistcontained network.<ip_address> trunk

In addition, the following command returns all the circuits configured on a trunk:

cvlistcontained network.<ip_address>.trunkname.<name> circuit

When adding a trunk, specify the LPort of each trunk endpoint:

cvadd network.<ip_address>.trunkname.<name>
-Lport1 switch.<ip_address>.card.<id>.pport.<id>.lport.<id>
-Lport2 switch.<ip_address>.card.<id>.pport.<id>.lport.<id> {-Attribute value}*

When adding a Multi-Link Frame Relay (MLFR) trunk, specify the LPort of each
trunk endpoint without specifiying a PPort:

cvadd network.<ip_address>.trunkname.<name>
-Lport1 switch.<ip_address>.card.<id>.lport.<id>
-Lport2 switch.<ip_address>.card.<id>.lport.<id> {-Attribute value}*

To identify Direct Trunk LPort type (such as DirectLine Trunk, ATM Direct Trunk,
and so on):

switch.<ip_address>.card.<id>.pport.<id>.lport.<id>

To identify Frame OPTimum Trunk LPort type:

switch.<ip_address>.card.<id>.pport.<id>.dlci.<id>

To identify ATM OPTimum Trunk LPort type (such as ATM OPTimum Cell Trunk,
ATM OPTimum Frame Trunk, and so on):

switch.<ip_address>.card.<id>.pport.<id>.vpi.<id>.vci.<id>

To identify MLFR Trunk LPort type:

switch.<ip_address>.card.<id>.lport.<id>
NavisXtend Provisioning Server User’s Guide 11/16/983-41

Using the CLI
CLI Examples

Beta Draft Confidential
CVT_VPCITable

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.vpcitable.<id> {-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> vpcitable

CVT_VPN
cvadd network.<ip_address>.vpn.<name>
3-4211/16/98 NavisXtend Provisioning Server User’s Guide

NavisXtend Provisioning Server User’s Guide

Beta Draft Confidential
4

it
Using the SNMP MIB

This chapter describes how to use the SNMP MIB to access the Provisioning Server.
To understand the Provisioning Server object hierarchy, first read Chapter 1.

About the Enterprise-specific MIB

The enterprise-specific MIB interface provides SNMP access to the Provisioning
Server. Use the Provisioning Server MIB to provision via SNMP instead of using a C
or C++ program or the CLI.

The Provisioning Server SNMP agent supports the SNMPv1 and SNMPv2c protocols.
The following SNMP operations are supported:

• get

• get-next

• set (used for creating, modifying, and deleting)

The Provisioning Server MIB is defined according to Structure of Management
Information version 2 (SMIv2). You can view the MIB with an SMIv2-compliant
MIB browser.

To compile the MIB, use an SMIv2-compliant compiler.

The Provisioning Server MIB is different than the Ascend Enterprise MIB.

The Provisioning Server does not generate or process SNMP traps, nor does
support the getBulkRequest and InformRequest SNMPv2 PDU types.
4-1

Using the SNMP MIB
MIB Structure

Beta Draft Confidential

t does

uest

e
e is

-
o

rver

The
n).
The MIB is defined in the file provserv.mib, which is installed in the directory
/opt/ProvServ/snmp_mibs.

If you install the Provisioning Server on a separate machine from NavisCore, and you
want to use the HP OpenView MIB browser to view the MIB, perform the following
steps:

1. File transfer provserv.mib from the Provisioning Server machine to the directory
opt/CascadeView/snmp_mibs on the NavisCore machine.

2. Load the MIB file from the NavisCore machine.

For a listing of the variables in the Provisioning Server MIB, see the NavisXtend
Provisioning Server Enterprise MIB Definitions.

Community Strings

The Provisioning Server implements an SNMP agent as a separate entity within the
server to service MIB interface requests. The community name provides a mechanism
for authentication and access-control at the agent. The Provisioning Server supports
two community names, one for Read-Only operations and another for Read-Write
operations.

The community strings are defined using the environment variables
CV_READONLY_COMMUNITY_STRING (default value ‘public’) and
CV_READWRITE_COMMUNITY_STRING (default value ‘ascend’). If the
environment variables are defined in the script start-server.sh, the specified strings
take precedence. If they are not set in the script or if the server shell environmen
not define the variables, the server assumes the default values.

If the community name is not valid when you issue an snmp_set request, the req
exceeds the time-out period and fails. You can access the Command Error Table in the
MIB to see if the source of the problem is an invalid community name. Specify th
Read-Only community name when you access the table, as that community nam
used for validation purposes.

When you make an snmp_get request, specify either the Read-Only or the ReadWrite
community name. If you use a different community name and you encounter an errr,
the error is not propagated to the Command Error Table.

For details on setting environment variables to configure how the Provisioning Se
handles MIB requests, see “Setting Environment Variables” on page2-11.

MIB Structure

The Provisioning Server MIB defines objects that a client can configure or read.
MIB is organized into logical groups by object (node, card, LPort, PPort, and so o
Each group contains table entries that map to the attributes of the API.
4-211/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
MIB Structure

Beta Draft Confidential

l
 an

ic

The various groups of the MIB are placed under the Provisioning Server object
identifier (OID):

1.3.6.1.4.1.277.9.1

where the last term in the OID represents the version number of the MIB.

Each group can have one or more tables and/or scalar objects. The tables are
two-dimensional, with each column representing an attribute and each row
representing an object instance on a switch. Because a column contains rows for all
possible object instances, many of which may not actually use that attribute, a table
can contain holes. Holes are non-applicable elements of the matrix. For example, in
the PPort table, the column that contains the attribute pportChannelIsInUse is sparse
because it contains values only for PPort instances present on channelized cards.

Row instances in a table are uniquely identified by Index information. The Index
represents the information you need to provide when issuing a command on a
particular object. For example, to configure an LPort, you need to specify the IP
address of the switch that contains the LPort and the ifIndex.

Segmented Information in Multiple Tables

LPorts are always identified by specifying the IP address of the switch that contains
the LPort and the LPort’s ifIndex. Because LPorts are complex objects, additiona
information (such as LPortId, DLCI number, or VPI/VCI pair) is required to obtain
ifIndex.

The MIB uses Translation Tables to convert the information required for a specif
LPort type into the ifIndex value. The Translation Table provides a unique key to
access a specific row in the Configuration Table (the table that contains the
configuration attributes of the LPort). Table 4-1 lists the information required to
create each type of LPort and which specific Translation Table to use.

Table 4-1. Information Required for Creating Specific LPorts

LPort Type Information
Required

Table to Use

ATM Direct Trunk

ATM UNI DCE/DTE

Direct Line Trunk

Encapsulation FRAD

FR NNI

FR UNI DCE/DTE

PPP to1490 Encapsulation

SMDS DXI/SNI DTE/DCE

SMDS OPT Trunk

SMDS SSI DTE

Switch

Card

PPort

LPort Id

lportIdIndexTransTable

lportIdChannelIndexTransTable (for LPorts
on the channelized DS3 card)
NavisXtend Provisioning Server User’s Guide 11/16/984-3

Using the SNMP MIB
MIB Structure

Beta Draft Confidential
Circuits are segmented into several categories of tables, based on technology. You
access various tables to configure circuit endpoints and configure the
cross-connections between endpoints. Table 4-2 lists the information required to
create each type of circuit endpoint and which specific endpoint table to use. The type
of endpoint table to use depends on the type of services offered on the card on which
the endpoint is created. Note that the ServiceName can be used with either or both
endpoints.

Once the endpoints are created, use the CircuitCrossConnectTable.

FR OPT PVC Trunk Switch

Card

PPort

DLCI

dlciIndexTransTable

dlciChannelIndexTransTable (for LPorts on
the channelized DS3 card)

Virtual UNI DCE/DTE Switch

Card

PPort

VPI start
number

vpiStartIndexTransTable

ATM OPT Cell Trunk Switch

Card

PPort

VPI (1-15)/
VCI 0

vpiVciIndexTransTable

vpiVciChannelIndexTransTable (for LPorts
on the channelized DS3 card)

ATM Network Interworking for
FR NNI

ATM OPT Frame Trunk

Switch

Card

PPort

VPI (0-15)/
VCI (32-255)

vpiVciIndexTransTable

vpiVciChannelIndexTransTable (for LPorts
on the channelized DS3 card)

Table 4-1. Information Required for Creating Specific LPorts (Continued)

LPort Type Information
Required

Table to Use
4-411/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
MIB Structure

Beta Draft Confidential
Table 4-2. Information Required for Creating Specific Circuits

Circuit Type Card Type Information
Required

Table to Use

FR-FR All cards on B-STDX
and STDX except:

1-port ATM IWU OC3

1-port ATM-CS/DS3

6-port DS3 Frame Relay
card on CBX 500.

{switchIdIndex

lportIfIndex

DlciIdIndex}

frCircuitEndpointTable

FR-FR
(with either
endpoint using
ServiceName)

All cards on B-STDX
and STDX except:

1-port ATM IWU OC3

1-port ATM-CS/DS3

6-port DS3 Frame Relay
card on CBX 500.

{switchIdIndex

lportIfIndex

DlciIdIndex } (for
non-ServiceName based
endpoint)

{networkIdIndex

networkServiceName
Index

dlciIdIndex} (for
ServiceName based
endpoint)

frCircuitEndpointTable (for
non-ServiceName endpoint)

frCircuitServiceNameEndpoint
Table (for ServiceName based
endpoint)

ATM-ATM All cards on CBX/GX
(except 6-port DS3
Frame Relay) and 1-port
ATM IWU OC3 and
1-port ATM CS/DS3
card on B-STDX

{switchIdIndex

lportIfIndex

vpiIndex

vciIndex}

atmCircuitEndpointTable

ATM-ATM
(with either
endpoint using
ServiceName)

All cards on CBX/GX
(except 6-port DS3
Frame Relay) and 1-port
ATM IWU OC3 and
1-port ATM CS/DS3
card on B-STDX

{switchIdIndex

lportIfIndex

vpiIndex

vciIndex} (for
non-ServiceName based
endpoint)

{networkIdIndex

networkServiceName
Index

vpiIndex

vciIndex} (for
ServiceName based
endpoint)

atmCircuitEndpointTable (for
non-ServiceName endpoint)

atmCircuitServiceNameEndpoint
Table for ServiceName based
endpoint)
NavisXtend Provisioning Server User’s Guide 11/16/984-5

Using the SNMP MIB
MIB Structure

Beta Draft Confidential
ATM-ATM One endpoint on any
card that is one of the
following (category A):

All cards on CBX 500.

1-port ATM IWU OC3
card and 1- port ATM
CS/DS3 card on the
B-STDX.

The other endpoint on
any card that is one of
the following (category
B):

All cards on B-STDX
except 1-port ATM
IWU OC3 card and
1-port ATM CS/DS3
card.

For category A or
category B without
ServiceNames use:

{switchIdIndex

lportIfIndex

vpiIndex

vciIndex}

For category A or B
with ServiceNames use:

{networkIdIndex

networkServiceName
Index

vpiIndex

vciIndex}

For category A without
ServiceName use
atmCircuitEndpointTable.

For category A with ServiceNames
use
atmCircuitServiceNameEndpoint
Table.

For category B without
ServiceName use
interworkingCircuitEndpointTable.

Use
interworkingCircuitServiceName
EndpointTable.

ATM-ATM Both endpoints exist on
cards that belong to
category B as explained
above.

For category B without
ServiceNames use:

{switchIdIndex

lportIfIndex

vpiIndex

vciIndex}

For category B with
ServiceNames use:

{networkIdIndex

networkServiceName
Index

vpiIndex

vciIndex}

Without ServiceName, use
interworkingCircuitEndpointTable.

For category B with ServiceNames
use
interworkingCircuitServiceName
EndpointTable.

FR-ATM
Interworking

Does not depend on the
card type of the
endpoints.

For the FR endpoint:

{switchIdIndex

lportIfIndex

dlciIdIndex}

For the ATM endpoint:

{switchIdIndex

lportIfIndex

vpiIndex

vciIndex}

For the ATM endpoint, use

interworkingCircuitEndpointTable

For the FR endpoint use

frCircuitEndpointTable

Table 4-2. Information Required for Creating Specific Circuits (Continued)

Circuit Type Card Type Information
Required

Table to Use
4-611/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
MIB Structure

Beta Draft Confidential

on on
d
ibute
By segmenting information into separate tables based on technology or specific
features, the MIB improves performance of get-next operations because it minimizes
holes in matrices.

See the Provisioning Server MIB for details on the main groups of the MIB and the
indexing scheme for each group.

Row Aliasing

For objects in the MIB that have attributes dispersed in several tables, some attributes
are common to multiple tables. In the tables of the LPort and circuit groups, the
following attributes are common attributes:

• RowStatus (see “RowStatus Attribute” on page4-8)

• ModifyType (see “NumRetries Attribute” on page4-9)

• lportIfIndex (for tables in the LPort group only)

• CircuitNumber (for tables in the circuit group only)

• NumRetries (for tables in the circuit group only)
(see “NumRetries Attribute” on page4-9)

The tables containing common attributes are considered linked. Thus, an operati
a common attribute in one linked table affects the common attribute in the other linke
tables. For example, for a Frame Relay UNI DCE LPort, when the RowStatus attr
is modified in one table (such as the lportIdIndexTransTable), the value of that

FR-ATM
Interworking
with either
endpoint using
ServiceName

Does not depend on the
card type of the
endpoints.

For the ServiceName
based FR endpoint:

{networkIdIndex

networkServiceName
Index,

dlciIdIndex}

For the ServiceName
based ATMendpoint:

{networkIdIndex

networkServiceName
Index

vpiIndex

vciIndex}

For the FR endpoint use

frCircuitServiceNameEndpoint
Table

For the ATM endpoint use

interworkingCircuitServiceName
EndpointTable

Table 4-2. Information Required for Creating Specific Circuits (Continued)

Circuit Type Card Type Information
Required

Table to Use
NavisXtend Provisioning Server User’s Guide 11/16/984-7

Using the SNMP MIB
MIB Structure

Beta Draft Confidential

e
attribute is updated in other linked tables (such as the lportAdminTable and
lportFrTable). For a Frame Relay to Frame Relay circuit, when the RowStatus
attribute is modified in the frCircuitEndpointTable, the value of the attribute is
updated in the linked circuitCrossConnectTable.

This feature, known as row aliasing, gives the user the flexibility to set an attribute in
only one table rather than set it in all related tables. Using row aliasing, the
Provisioning Server reflects the same value for a common attribute for the same row
across linked tables. Row aliasing assures that the status of a row and its common
attributes are always the same irrespective of the table.

The lportIfIndex attribute is an attribute that is not directly set by the user. It is
generated when the user sets the RowStatus attribute to the createAndWait state in a
translation table (such as the lportIdIndexTransTable). Once lportIfIndex is generated,
the attribute is updated in the linked LPort tables lportIdIndexTransTable,
lportAdminTable, and lportFrTable.

The user does not directly set the CircuitNumber attribute. It is generated when the
user generates circuit endpoints. Once CircuitNumber is generated, the attribute is
updated in the linked circuit tables frCircuitEndpointTable and
circuitCrossConnectTable.

Column Access Specifiers

Access specifiers for a table column are specified as Read-Only, Read-Write, or
Not-Accessible. Because SNMP does not support the category Create-Only, attributes
with this restriction are defined as Read-Write. These attributes are usually mandatory
attributes that you provide when creating an object. See the NavisXtend Provisioning
Server Object Attribute Definitions for attributes that are Create-Only.

For most tables, the index attributes are specified as Not-Accessible. Instead of
accessing these index columns directly, you use the Translation Tables to convert
required information into index attributes.

Additional Table Entries

Most table entries have the attributes RowStatus and ModifyType. These attributes are
used in set operations. Circuit table entries have the NumRetries attribute, which
specifies retry behavior in the event of a failed attempt to add, delete, or modify a
circuit.

RowStatus Attribute

The RowStatus attribute specifies the state of the table entry at a given time. Valid
values are as follows:

active (1) — Entry is active, such as when it has been created and definitions hav
been made to it.
4-811/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
MIB Structure

Beta Draft Confidential

base is

ct is

 to
quests

ecify

dify a

dify

ified
notInService (2) — Entry is not in service, such as when modifications are being
made to it.

notReady (3) — Entry is under creation.

createAndWait (5) — Entry is being created, and is waiting for definitions to be
made to it. When you set the RowStatus attribute to 5, it gets set to 3.

destroy (6) — Entry has been removed.

You must include the RowStatus attribute when you:

• Create an object

• Modify an object by specifying the attribute modifications in multiple PDUs

• Destroy an object

ModifyType Attribute

The ModifyType attribute specifies the update method, as follows:

1 sends updates to both the network component and the database. The data
updated only if the network component updates successfully.

4 sends updates to the database only.

5 sends updates to the database only and sets a flag indicating that the obje
out of synchronization in the database.

By default, updates are made to both the component and the database.

You must include the ModifyType attribute when you want an update to be made
the database only. The setting applies only to the current request. Subsequent re
revert to the default setting.

NumRetries Attribute

For requests to add, delete, or modify a circuit, use the NumRetries attribute to sp
the retry control.

By default, when the Provisioning Server receives a request to add, delete, or mo
circuit, the server obtains card status for both circuit endpoints:

• If both cards are up, the Provisioning Server performs the add, delete, or mo
request as normal.

• If either card is down or is not reachable (for example, because of an SNMP
timeout), the server retries the request for card status as many times as spec
by the retry control:
NavisXtend Provisioning Server User’s Guide 11/16/984-9

Using the SNMP MIB
MIB Structure

Beta Draft Confidential

s the

ill

s to

rom
to

uest.
– If the card becomes reachable and is up, the Provisioning Server perform
circuit provisioning request.

– Once all retries have been issued, if the card is still not reachable or is st
down, the provisioning request is not performed.

The attribute has the default value 0 and the maximum value 5. The value applie
requests at either endpoint: when a retry is sent to obtain the card status of one
endpoint, the number of retries decrements for either endpoint. Specify the
NumRetries attribute for each MIB request.

NumRetries is a common attribute to the following tables:

• interworkingCircuitEndpointTable

• atmCircuitEndpointTable

• frCircuitEndpointTable

• circuitCrossConnectTable

• atmCircuitBillingTable

• atmCircuitNdcTable

• interworkingCircuitServiceNameEndpointTable

• atmCircuitServiceNameEndpointTable

• frCircuitServiceNameEndpointTable

This control prevents circuits from being partially provisioned and the database f
becoming out of sync with the switch. However, it can increase the time it takes
provision a circuit, depending on how many card status checks occur.

Keep in mind that this control affects the retry behavior of circuit provisioning
requests only. Other retry controls specified in cascadeview.cfg
(CV_SNMP_MAX_RETRIES, CV_SNMP_RETRY_INTERVAL, and
CV_SNMP_REQUEST_TIMEOUT) also apply to each request. Remember to
consider these other retry controls when specifying retry behavior of a circuit req
4-1011/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

y

l for

D,
Using the MIB

This section describes how to use the MIB to list, create, and modify a given
component on the network.

Using the SNMP Commands

The Provisioning Server supports the following SNMP commands:

get — Reads a single attribute of a row in a table.

get-next — Walks the MIB (similar to performing a ListContained command in
the API or CLI). The command is based on a lexicographical ordering of the
complete OID for various row instances. Thus, the command walks a table b
reading all row values of the first column before starting the second column.

set — Creates a new object, or modifies or deletes an existing object.

Command Error Table

The Command Error Table supplies information about any errors you encounter
during snmp_set operations to create or modify objects. This information is usefu
troubleshooting problems.

Entries in the table contain the following information:

• IP address of the host machine where the MIB client’s request originated.

• The request ID of the request sent to the server.

• UDP port number of the client.

• Error code encountered when the server executed the command.

• Error message string.

• The OID of the attribute (column) that is in error. If several attributes are in error,
only the first one is reported.

• The timestamp at which the error occurred.

If several MIB clients use the same host, it can be difficult to distinguish the various
entries in the table based on IP address. To determine uniqueness, use the request I
UDP port number, or the timestamp of the entry.

The Provisioning Server purges entries in the Command Error Table based on the
value of environment variable CV_SNMP_CMDERROR_CACHE_TIMEOUT. The
default setting of this variable is 6000 seconds. For more information on this
environment variable, see “Controlling MIB Cache” on page2-19.
NavisXtend Provisioning Server User’s Guide 11/16/984-11

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
SNMPv2 uses a richer set of error codes than SNMPv1. Because the bi-lingual agent
may be responding to SNMPv1 and SNMPv2 messages, it may need to map to the
appropriate error code. Table 4-4 is the table the agent currently uses to map an
SNMPv2 code to an SNMPv1 code.

MIB Cache and Database Locking

The Provisioning Server implements a MIB cache that stores data in memory for a
fixed time period. The server uses the cache to optimize performance of get-next
requests and to store data to be committed to the database during transactions
involving multiple PDUs. The caching behavior varies depending on which operation
is being performed. For details, see “Row Creation”, “Row Modification”, and
“get-next Operations” later in this section.

Table 4-3. Error Code Mapping from SNMPv2 to SNMPv1

SNMPv2 SNMPv1

noError noError

tooBig tooBig

genErr genErr

wrongValue badValue

wrongEncoding badValue

wrongType badValue

wrongLength badValue

inconsistentValue badValue

noAccess noSuchName

notWritable noSuchName

noCreation noSuchName

inconsistentName noSuchName

resourceUnavailable genErr

commitFailed genErr

authorizationError noSuchName

undoFailed genErr
4-1211/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
The object locking behavior for MIB objects in the database differs from the locking
behavior of the Provisioning Server API, CLI, or NavisCore. For these interfaces, the
steps associated with locking are transparent to the user. When an object is created or
modified, its parent object gets locked. The user specifies all the information needed
to create or modify the object in one request. Once the request is complete, the parent
gets unlocked.

By contrast, in the case of the MIB, the information needed to create or modify an
object may not be available in one PDU. As a result, the locks in the database must be
held for a longer time. Thus, the steps associated with locking are not transparent to
the user.

Row Creation

When an object is created, a new row is created in the database. During a successful
row creation, you perform the following steps:

1. Initiate the transaction by setting the RowStatus attribute to the createAndWait
state.

The parent object gets locked.

2. Issue one or more snmp_set requests to assign values to other attributes of the
row.

The attribute values are stored in MIB cache.

3. Complete the transaction by setting the RowStatus attribute to the active state.

When no errors are encountered, the changes are committed to the switch and to
the database, the row is flushed from MIB cache, and the lock is released.

If an error is encountered, the row remains in cache and the lock remains in effect.
You can correct the error by modifying the contents of the cache (by returning to step
2). Once you have corrected the error and set the RowStatus to the active state, the
row creation is completed, the row is flushed from MIB cache, and the lock is
released. Note that it can take several iterations before all the errors are corrected.

If the API, CLI, or NavisCore makes modifications to an object in the database
at the same time that the object is present in MIB cache during a get or get-next
request, the MIB values in cache become stale.
NavisXtend Provisioning Server User’s Guide 11/16/984-13

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

 an
her

ve to

e

ple

other

tate.
If a user initiates but does not complete a transaction to create an object, the
partially-created row remains in MIB cache for the amount of time specified by the
environment variable CV_SNMP_LOCK_TIMEOUT. And, the parent object remains
locked for the time specified by the CV_SNMP_LOCK_TIMEOUT value, preventing
other users from accessing the parent object. Thus, users should make sure to
complete all transactions. Once the CV_SNMP_LOCK_TIMEOUT timer expires, the
partially-created row is flushed out of cache and the lock is removed.

For more information on this environment variable, see “Controlling Object Locking”
on page2-19.

Row Modification

When an object is modified, a row is modified in the database. Before modifying
object, perform an snmp_get request on the RowStatus attribute to check if anot
user is currently accessing the entry. If the entry is in use, retry your request later.

Row modification can be performed with or without modifying the RowStatus
attribute.

PDU Modification without Modifying RowStatus

Simple modifications do not require you to set the RowStatus to the notInService
state; the RowStatus remains Active through the transaction. When you do not ha
modify the RowStatus attribute, the locking and unlocking of the object becomes
transparent.

If you want to modify only a few attributes, you can issue one PDU containing th
appropriate values for the varbinds. Or, you can issue a PDU multiple times.

PDU Modification by Modifying RowStatus

With complex modifications involving a number of attributes, you can issue multi
PDUs containing the appropriate values for the varbinds. However, to maximize MIB
efficiency, you should specify all varbinds in one PDU whenever possible.

Because of attribute dependencies, you should first set the RowStatus to the
notInService state before making the modifications.

During a complex modification, you perform the following steps:

1. Issue an snmp_get request on the RowStatus attribute to make sure that no
user is currently accessing the object.

2. Initiate the transaction by setting the RowStatus attribute to the notInService s

The object gets locked.

To maximize MIB efficiency, you should specify all varbinds in one PDU
whenever possible.
4-1411/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
3. Issue one or more snmp_set requests to assign values to other attributes of this
row.

The attribute values are stored in MIB cache.

4. Complete the transaction by setting the RowStatus attribute to the active state.

When no errors are encountered, the changes are committed to the switch and to
the database, and the lock is released.

If an error is encountered during modification, the lock remains in effect. You can
correct the error by modifying the contents of the cache (by returning to step 3). Once
you have corrected the error and set the RowStatus to the active state, the row creation
is completed and the lock is released.

If a user initiates (but does not complete) a transaction to modify an object, the
partially-modified row remains in MIB cache for the amount of time specified by the
environment variable CV_SNMP_LOCK_TIMEOUT. And, the object remains locked
for the time specified by the CV_SNMP_LOCK_TIMEOUT value, preventing other
users from accessing the object. Thus, users should make sure to complete all
transactions. Once the CV_SNMP_LOCK_TIMEOUT timer expires, the
partially-created row is flushed out of cache and the lock is removed.

get-next Operations

You can perform a get-next request starting at any location in the MIB (including the
top of the MIB), at any group of the MIB, any column of a table, or a specific column
of an instance.

get-next requests are performance-intensive operations. The Provisioning Server uses
MIB cache to cache objects (rows), thus optimizing performance of get-next requests.
When the objects are initially loaded into cache from the database, the response to a
get-next request may be slow. However, once the caching is complete, the response
becomes significantly faster.

Be aware that using get-next operations on tables with many entries in the database
may take some time to retrieve. These operations can significantly affect performance
of the server. Although a get-next operation will not block other requests, it can slow
the response to the other requests.

The Provisioning Server purges entries in MIB cache resulting from a get-next
operation based on the value of environment variable
CV_SNMP_ROWENTRY_TIMEOUT. The default setting of this variable is 900
seconds. For more information on this environment variable, see “Controlling MIB
Cache” on page2-19.
NavisXtend Provisioning Server User’s Guide 11/16/984-15

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

ated
Specifying the Object Identifier

When you want to access a specific variable from a MIB group, you enter an OID that
uses the following format:

{Provisioning Server OID}.{Group}.{Sub-group}.{Table}.{Entry}.{Column}.{Index}

Complex objects, such as LPorts and circuits, require a sub-group; simple objects do
not.

The Provisioning Server OID is:

1.3.6.1.4.1.277.9.1

where the last term in the OID represents the version number of the MIB.

Example 1: get Command

To find out what type of card is located in a particular slot of a switch, use the
following steps to determine the OID of the command you want to issue:

1. Determine the group value by locating the Card Group in the beginning of the
MIB document. The following line indicates that the group value is 4:

card OBJECT IDENTIFIER ::= { psMibRev2 4 }

Cards are simple objects that do not require a sub-group name.

2. Determine the Table value by locating the Table index, cardTable. The line
::= { card 1 } indicates that the Table value is 1:

cardTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CardEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Table representing information about all cards in the network"
 ::= { card 1}

3. Determine the Entry value by locating the Entry index, cardEntry. The line
::= { cardTable 1 } indicates that the Entry value is 1:

cardEntry OBJECT-TYPE
 SYNTAX CardEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Entry representing information about one card"
 INDEX { switchIdIndex, slotIdIndex }
 ::= { cardTable 1 }

4. Determine the Column value for the MIB variable you want to access. To retrieve
a card’s type, you need to access the variable cardDefinedType. The line
::= { cardEntry 1 } indicates that the Column value is 1.

5. Determine the Index items by locating them in the cardEntry variable you loc
in step 3. The line INDEX { switchIdIndex, slotIdIndex } indicates the index
items you need to provide to complete this command.
4-1611/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
The switchIdIndex represents the IP address of the switch. The slotIdIndex
represents the slot where the card is located. If the switch that contains the card
has IP address 152.148.10.19 and the card for which you are requesting
information is in slot 8, then the index is 152.148.10.19.8.

6. Enter the following command to retrieve the card type for the card (this example
uses MIT SNMP Tools command syntax):

snmpget -h <server-machine-name> -p<server-port> -c<community-name>
1.3.6.1.4.1.277.9.1.4.1.1.1.152.148.10.19.8

where {Provisioning Server OID = 1.3.6.1.4.1.277.9.1}.{Group = 4}.
{Table = 1}.{Entry = 1}.{Column = 1}.{Index = 152.148.10.19.8}

The system responds by displaying the command as the full MIB tree index,
1.3.6.1.4.1.277.9.1.4.1.1.1.152.148.10.19.8, and retrieves an integer that
represents the type of the card. See the cardDefinedType variable to interpret this
integer.

Example 2: get-next Command

To retrieve the Admin status for all LPorts on a switch, use the following steps to
determine the OID of the command you want to issue:

1. Determine the group value by locating the LPort Group in the beginning of the
MIB document. The following line indicates that the group value is 6:

lport OBJECT IDENTIFIER ::= { psMibRev2 6 }

2. Admin status is a configuration attribute. To determine the Sub-group value,
locate the LPortConfiguration table in the beginning of the MIB document. The
following line indicates that the Sub-group value is 2.

lportConfigurationOBJECT IDENTIFIER ::= { lport 2 }

3. Determine the Table value by locating the Table index, lportAdminTable. The
line ::= { lportConfiguration 1 } indicates that the Table value is 1:

lportAdminTable OBJECT-TYPE
 SYNTAX SEQUENCE OF LportAdminEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "List of logical port common attribute entries."
 ::= { lportConfiguration 1 }

4. Determine the Entry value by locating the Entry index, lportAdminEntry. The
line ::= { lportAdminTable 1} indicates that the Entry value is 1:

lportAdminEntry OBJECT-TYPE
 SYNTAX LportAdminEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Logical Port Configuration Entry"
 INDEX { switchIdIndex, lportIfIndex }
 ::= { lportAdminTable 1 }
NavisXtend Provisioning Server User’s Guide 11/16/984-17

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
5. Determine the Column value for the MIB variable you want to access. To retrieve
the Admin status, you need to access the variable lportAdminAdminStatus. The
line ::= { lportAdminEntry 19 } indicates that the Column value is 19:

lportAdminAdminStatus OBJECT-TYPE
 SYNTAX INTEGER {
 up(1),
 down(2),
 testing(3)
 }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "LPort Administrative Status. This attribute is mandatory

for lport creation"
 ::= { lportAdminEntry 19}

6. Enter the following command to request Admin status of all LPort instances in the
table (this example uses MIT SNMP Tools command syntax):

snmpget -h <server-machine-name> -p<server-port> -c<community-name>
1.3.6.1.4.1.277.9.1.6.2.1.1.19

where {Provisioning Server OID = 1.3.6.1.4.1.277.9.1}.{Group = 6}.
{Sub-group = 2}.{Table = 1}.{Entry = 1}.{Column = 19}

Index items are omitted, because the request is for Admin status of all LPort
instances in the table.

For each LPort instance in the network, the system responds by displaying the
command as the full MIB tree index, 1.3.6.1.4.1.277.9.1.6.2.1.1.19, and retrieves
an integer that represents the Admin status of the LPort. If the value is 1, the
Admin Status of an LPort is up; if the value is 2, the Admin Status is down.

The following examples illustrate how to use the Provisioning Server MIB to create,
modify, and delete objects. Several examples involve ATM objects. You would use a
similar approach to manage Frame Relay objects, except that you access different
tables in the MIB. For example, to manage a Frame Relay LPort, you use the
appropriate LPort Translation Table, the lportAdminTable, and the lportFrTable.

Example 3: set Command to Create an ATM LPort

To create an ATM LPort, you use the lportIdIndexTransTable to map between the
card, PPort, and LPort ID and the LPort interface number. You must specify the LPort
ID and request an interface number for it.

To create an ATM LPort, use the following steps:

1. Issue an snmp_set request to obtain an LPort interface number based on the LPort
ID. Set the lportIdIndexTransRowStatus to the createAndWait state, specifying
the switchIdIndex 1.1.1.1, slotIdIndex 7, pportIdIndex 8, and lportIdIndex 1.

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).
4-1811/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
2. Issue an snmp_get request to obtain the interface number (lportIfIndex) that will
be used to create a new entry in the lportAdminTable and the lportAtmTable.
Issue the request on the lportIdIndexTransIfIndex, specifying the switchIdIndex,
slotIdIndex, pportIdIndex, and lportIdIndex values.

The SNMP agent processes the request and returns an snmp_getResponse
(SNMPv1) or an snmp_Response (SNMPv2) with the lportIfIndex 7.

3. Issue a series of snmp_set requests that assign values to the attributes of the LPort
in both the lportAdminTable and the lportAtmTable.

The SNMP agent processes the requests by storing the values in MIB cache. Then,
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

4. Issue an snmp_set request to commit the new entry. Set the lportAdminRowStatus
to the active state, specifying the switchIdIndex 1.1.1.1 and the lportIfIndex 7.
This command automatically sets the lportIdIndexTransRowStatus to the active
state.

The SNMP agent processes the request by committing the new entry to the switch
and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2) to the MIB client.

Figure 4-1 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the LPort.

Figure 4-1 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning with snmp_setResponse, a v2 agent uses
snmp_Response. When a v1 agent sends snmp_getResponse, a v2 agent sends
snmp_Response.
NavisXtend Provisioning Server User’s Guide 11/16/984-19

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
Figure 4-1. Creating an ATM LPort

MIB Client SNMP Agent

1

3

snmp_set lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == createAndWait

4

NavisCore
Database

snmp_setResponse lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == createAndWait

snmp_get lportIdIndexTransIfIndex.1.1.1.1.7.8.12

snmp_getResponse lportIdIndexTransIfIndex.1.1.1.1.7.8.1 == 7

snmp_set (setting attributes of lportAdminTable and lportAtmTable)

snmp_setResponse == noError

snmp_set lportAdminRowStatus.1.1.1.1.7 == active

commitsnmp_setResponse lportAdminRowStatus.1.1.1.1.7 == active

Ascend Switch
4-2011/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

 use,

s in

on the

will
sue

e

Then,

the

ent
Example 4: set command to Modify an ATM LPort

You can modify an LPort using either of the following methods:

• Specifying the interface number of the LPort

• Specifying the LPort’s VPI/VCI pair

Before modiying any attribute, perform an snmp_get request on the RowStatus
attribute to check if another user is currently accessing the entry. If the entry is in
retry your request later.

Before modifying the LPort attributes, set the lportIdIndexTransRowStatus to the
notInService state. You can skip this step if you specify the attribute modification
a single PDU.

To modify attributes of an ATM LPort for which you do not know the interface
number, use the following steps:

1. Issue an snmp_set request to set the LPort to the notInService state, based
LPort ID. Set the lportIdIndexTransRowStatus to the notInService state,
specifying the switchIdIndex 1.1.1.1, slotIdIndex 7, pportIdIndex 8, and
lportIdIndex 1.

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

2. Issue an snmp_get request to obtain the interface number (lportIfIndex) that
be used to modify the entry in the lportAdminTable and the lportAtmTable. Is
the request on the lportIdIndexTransIfIndex, specifying the switchIdIndex,
slotIdIndex, pportIdIndex, and lportIdIndex values.

The SNMP agent processes the request and returns an snmp_getResponse
(SNMPv1) or an snmp_Response (SNMPv2) with the lportIfIndex 7.

3. Issue a series of snmp_set requests that modify values of the attributes of th
LPort in both the lportAdminTable and the lportAtmTable.

The SNMP agent processes the requests by storing the values in MIB cache.
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

4. Issue an snmp_set request to commit the modified entry. Set the
lportAdminRowStatus to the active state, specifying the switchIdIndex 1.1.1.1
and the lportIfIndex 7. This command automatically sets the
lportIdIndexTransRowStatus to the active state.

The SNMP agent processes the request by committing the modified entry to
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2).
NavisXtend Provisioning Server User’s Guide 11/16/984-21

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
Figure 4-2 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when modifying attributes of the LPort.

Figure 4-2. Modifying an ATM LPort

Figure 4-2 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning with snmp_setResponse, a v2 agent uses
snmp_Response. When a v1 agent sends snmp_getResponse, a v2 agent
sends snmp_Response.

MIB Client SNMP Agent

1

3

snmp_set lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == notInService

4

NavisCore
Database

snmp_setResponse lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == notInService

snmp_get lportIdIndexTransIfIndex.1.1.1.1.7.8.12

snmp_getResponse lportIdIndexTransIfIndex.1.1.1.1.7.8.1 == 7

snmp_set (setting attributes of lportAdminTable and lportAtmTable)

snmp_setResponse == noError

snmp_set lportAdminRowStatus.1.1.1.1.7 == active

commitsnmp_setResponse lportAdminRowStatus.1.1.1.1.7 == active

Ascend Switch
4-2211/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

ute to
 your

x
you
re

the

ent

Example 5: set Command to Delete an ATM LPort

You can delete an LPort using either of the following methods:

• Specifying the interface number of the LPort

• Specifying the LPort ID

Before deleting an object, perform an snmp_get request on the RowStatus attrib
check if another user is currently accessing the object. If the object is in use, retry
request later.

To delete an ATM LPort for which you do not know the interface number, use the
following step:

1. Issue an snmp_set request to delete an LPort based on the LPort ID. Set the
lportIdIndexTransRowStatus to the destroy state, specifying the switchIdInde
1.1.1.1, slotIdIndex 7, pportIdIndex 8, and lportIdIndex 1. (As an alternative,
could set the lportAdminRowStatus to the destroy state, as these attributes a
linked by aliasing.)

The SNMP agent processes the request by committing the modified entry to
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2).

Figure 4-3 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when deleting the LPort.

Figure 4-3 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning with snmp_setResponse, a v2 agent sends
snmp_Response.
NavisXtend Provisioning Server User’s Guide 11/16/984-23

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

the

ent

Figure 4-3. Deleting an ATM LPort Using its VPI/VCI Pair

To delete an ATM LPort for which you know the interface number, use the following
step:

1. Issue an snmp_set request to delete an LPort based on the LPort’s interface
number. Set the lportAdminRowStatus to the destroy state, specifying the
switchIdIndex 1.1.1.1 and the lportIfIndex 7.

The SNMP agent processes the request by committing the modified entry to
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2).

Figure 4-4 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when deleting the LPort.

MIB Client SNMP Agent

1 snmp_set lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == destroy

NavisCore
Database

snmp_setResponse lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == destroy
commit

Ascend Switch

Figure 4-4 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning with snmp_setResponse, a v2 agent sends
snmp_Response.
4-2411/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
Figure 4-4. Deleting an ATM LPort Using its Interface Number

Example 6: set Command to Create an ATM Circuit

To create an ATM circuit, you define the two circuit endpoints using the
atmCircuitEndpointTable and establish their interconnection using the
circuitCrossConnectTable (see Table 4-2).

To create an ATM circuit, use the following steps:

1. Issue an snmp_set request to define the two circuit endpoints and establish their
interconnection. Set the atmCircuitEndpointRowStatus to the createAndWait
state, specifying both endpoint 1 (switchIdIndex 1.1.1.1, lportIfIndex 10,
vpiIdIndex 8, and vciIdIndex 34) and endpoint 2 (switchIdIndex 2.2.2.2,
lportIfIdIndex 4, vpiIdIndex 4, and vciIdIndex 54) in a single PDU.

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

2. Issue a series of snmp_set requests that assign values to the attributes of the circuit
endpoints in the atmCircuitEndpointTable.

The SNMP agent processes the requests by storing the values in MIB cache. Then,
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

3. Issue an snmp_get request to obtain the circuit number that will be used to create a
new entry in the circuitCrossConnectTable. Specify the switchIdIndex,
lportIfIndex, vpiIdIndex, and vciIdIndex values for one of the endpoints (the
circuit number is the same for both endpoints).

MIB Client SNMP Agent

1 snmp_set lportAdminRowStatus.1.1.1.1.7 == destroy

NavisCore
Database

snmp_setResponse lportAdminRowStatus.1.1.1.1.7 == destroy
commit

Ascend Switch
NavisXtend Provisioning Server User’s Guide 11/16/984-25

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
The SNMP agent processes the request and returns an snmp_getResponse
(SNMPv1) or an snmp_Response (SNMPv2) with the
atmCircuitEndpointCircuitNumber 10.

4. Issue a series of snmp_set requests that assign values to the attributes of the circuit
interconnection in the circuitCrossConnectTable.

The SNMP agent processes the requests by storing the values in MIB cache. Then,
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

5. Issue an snmp_set request to commit the new entry. Set the
circuitCrossConnectRowStatus to the active state, specifying the
atmCircuitEndpointCircuitNumber 10. This command automatically sets the
atmCircuitEndpointRowStatus of the two endpoints to the active state.

The SNMP agent processes the request by committing the new entry to the switch
and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2).

Figure 4-5 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the ATM circuit.

Figure 4-5 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning with snmp_setResponse, a v2 agent sends
snmp_Response. When a v1 agent sends snmp_getResponse, a v2 agent
sends snmp_Response.
4-2611/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
Figure 4-5. Creating an ATM Circuit

MIB Client SNMP Agent

1

3

snmp_set atmCircuitEndpointRowStatus.1.1.1.1.10.8.34 == createAndWait
 atmCircuitEndpointRowStatus.2.2.2.2.4.4.54 == createAndWait

4

NavisCore
Database

snmp_get atmCircuitEndpointCircuitNumber.1.1.1.1.10.8.34

2

snmp_getResponse atmCircuitEndpointCircuitNumber.1.1.1.1.10.8.34 == 10

snmp_set (setting attributes of atmCircuitEndpointTable for both endpoints)

snmp_setResponse == noError

commit

5

snmp_setResponse circuitCrossConnectRowStatus.10 == active

Ascend Switch

snmp_set (setting attributes of circuitCrossConnectTable)

snmp_setResponse == noError

snmp_setResponse atmCircuitEndpointRowStatus.1.1.1.1.10.8.34 == createAndWait
 atmCircuitEndpointRowStatus.2.2.2.2.4.4.54 == createAndWait

snmp_set circuitCrossConnectRowStatus.10 == active
NavisXtend Provisioning Server User’s Guide 11/16/984-27

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

 on
If the

the
s in

rcuit

both

 on the
ate,

e

Then,

ber
e

the

ent
Example 7: set Command to Modify an ATM Circuit

You can modify a circuit using either of the following methods:

• Specifying the circuit number

• Specifying the circuit’s endpoints

Before performing a modification on any attribute, perform an snmp_get request
the RowStatus attribute to check if another user is currently accessing the entry.
entry is in use, retry your request later.

Before modifying the circuit attributes, set the circuitCrossConnectRowStatus to
notInService state. You can skip this step if you specify the attribute modification
a single PDU.

To modify attributes of a circuit, use the following steps:

1. Issue an snmp_get request to obtain the circuit number in the appropriate Ci
Endpoint Table. Specify the switch IP address, lportIfIndex, vpiIdIndex, and
vciIdIndex values for one of the endpoints (the circuit number is the same for
endpoints).

If you know the circuit number, skip to step 2.

2. Issue an snmp_set request to set the circuit to the notInService state, based
circuit number. Set the circuitCrossConnectRowStatus to the notInService st
specifying the circuit number 10.

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

3. Issue a series of snmp_set requests that modify values of the attributes of th
circuit. Modifications are made to the circuitCrossConnectTable and the
atmCircuitEndpointTable.

The SNMP agent processes the requests by storing the values in MIB cache.
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

4. Issue an snmp_set request to commit the modified entry. Set the
circuitCrossConnectRowStatus to the active state, specifying the circuit num
10. This command automatically sets the atmCircuitEndpointRowStatus to th
active state.

The SNMP agent processes the request by committing the modified entry to
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2).
4-2811/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
Figure 4-6 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when modifying attributes of the circuit.

Figure 4-6. Modifying an ATM Circuit Using its Circuit Number

Figure 4-6 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning with snmp_setResponse, a v2 agent sends
snmp_Response.

MIB Client SNMP Agent

2

4

snmp_set circuitCrossConnectRowStatus.10 == notInService

NavisCore
Database

snmp_setResponse circuitCrossConnectRowStatus.10 == notInService

3

snmp_set (setting attributes of atmCircuitEndpointTable and/or
circuitCrossConnectTable)

snmp_setResponse == noError

commit

snmp_setResponse circuitCrossConnectRowStatus.10 == active

Ascend Switch

snmp_set circuitCrossConnectRowStatus.10 == active

1 snmp_get (obtaining the circuit number in the appropriate Circuit Endpoint Table)
NavisXtend Provisioning Server User’s Guide 11/16/984-29

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

ute to
 your

et the
ber

the

ent

Example 8: set Command to Delete an ATM Circuit

You can delete a circuit using either of the following methods:

• Specifying the circuit number

• Specifying the circuit’s endpoints

Before deleting an object, perform an snmp_get request on the RowStatus attrib
check if another user is currently accessing the object. If the object is in use, retry
request later.

To delete an ATM circuit for which you know the circuit number, use the following
step:

1. Issue an snmp_set request to delete a circuit based on the circuit number. S
circuitCrossConnectRowStatus to the destroy state, specifying the circuit num
10.

The SNMP agent processes the request by committing the modified entry to
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2).

Figure 4-7 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when deleting the circuit.

Figure 4-7 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning with snmp_setResponse, a v2 agent sends
snmp_Response.
4-3011/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

s to
th of
, 98,

e VPN

Then,

o the
e,

witch
Figure 4-7. Deleting an ATM Circuit Using its Circuit Number

Example 9: set Command to Create a VPN Indexed by Name

To specify a string value when you create an object, you specify the length of the
string and the ASCII representation of each of the characters in the string.

To create a VPN indexed by name, use the following steps:

1. Issue an snmp_set request to set the VPN name “abc”. Set the vpnRowStatu
the createAndWait state, specifying the networkIdIndex 100.100.0.0, the leng
the name (3 characters), and the ASCII values of each letter in the name (97
and 99, respectively).

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

2. Issue a series of snmp_set requests that assign values to the attributes of th
in the vpnTable.

The SNMP agent processes the requests by storing the values in MIB cache.
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

3. Issue an snmp_set request to commit the new entry. Set the vpnRowStatus t
active state, specifying the networkIdIndex 100.100.0.0, the length of the nam
and the ASCII values of each letter in the name.

The SNMP agent processes the request by committing the new entry to the s
and to the NavisCore database.

MIB Client SNMP Agent

1 snmp_set circuitCrossConnectRowStatus.10 == destroy

NavisCore
Database

snmp_setResponse circuitCrossConnectRowStatus.10 == destroy

commit

Ascend Switch
NavisXtend Provisioning Server User’s Guide 11/16/984-31

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2) to the MIB client.

Figure 4-8 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the VPN.

Figure 4-8. Creating a VPN Indexed by Name

Figure 4-8 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning with snmp_setResponse, a v2 agent sends
snmp_Response.

MIB Client SNMP Agent

1

3

snmp_set vpnRowStatus.100.100.0.0.3.97.98.99 == createAndWait

NavisCore
Database

snmp_setResponse vpnRowStatus.100.100.0.0.3.97.98.99 == createAndWait

2 snmp_set (setting attributes of vpnTable)

snmp_setResponse == noError

snmp_set vpnRowStatus.100.100.0.0.3.97.98.99 == active

commitsnmp_setResponse vpnRowStatus.100.100.0.0.3.97.98.99 == active

Ascend Switch
4-3211/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

ingle
d set
he

e

Then,

f

witch

ent

Example 10: set Command to Create a ServiceName Indexed by
Name

To specify a string value when you create an object, you specify the length of the
string and the ASCII representation of each of the characters in the string.

When you create a ServiceName, the first PDU should contain the
networkServiceNameRowStatus as the first varbind and the
networkServiceNamePrimaryLPort as the second varbind.

To create a ServiceName indexed by the name “abc”, use the following steps:

1. Issue an snmp_set request to define the primary ServiceName binding. In a s
PDU, set the networkServiceNameRowStatus to the createAndWait state an
the networkServiceNamePrimaryLPort to the objectId (lportAdminIfIndex) of t
LPort. Specify the networkIdIndex 100.100.0.0, the length of the name (3
characters), and the ASCII values of each letter in the name (97, 98, and 99,
respectively).

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

2. Issue a series of snmp_set requests that assign values to the attributes of th
ServiceName in the networkServiceNameTable.

The SNMP agent processes the requests by storing the values in MIB cache.
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

3. Issue an snmp_set request to commit the new entry. Set the
networkServiceNameRowStatus to the active state, specifying the
networkIdIndex 100.100.0.0, the length of the name, and the ASCII values o
each letter in the name.

The SNMP agent processes the request by committing the new entry to the s
and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2) to the MIB client.

Figure 4-9 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the ServiceName binding.

Do not set the networkServiceNameBackupLPort attribute in an add request.
Otherwise, an error will be reported when the new entry is committed to the
database.
NavisXtend Provisioning Server User’s Guide 11/16/984-33

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
Figure 4-9. Creating a ServiceName Indexed by Name

Figure 4-9 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning with snmp_setResponse, a v2 agent sends
snmp_Response.

MIB Client SNMP Agent

1

3

snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == createAndWait

NavisCore
Database

2
snmp_set (setting attributes of networkServiceNameTable)

snmp_setResponse == noError

snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active

commitsnmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active

Ascend Switch

snmp_set networkServiceNamePrimaryLPort.100.100.0.0.3.97.98.99 == lportAdminIfIndex.10

snmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == createAndWait

snmp_setResponse networkServiceNamePrimaryLPort.100.100.0.0.3.97.98.99 == lportAdminIfIndex.10
4-3411/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

ing

 state.
 the
SCII

e

Then,

f

witch

ent

e

Example 11: set command to Modify a ServiceName Indexed by
Name

Before performing a modification on any attribute, perform an snmp_get request on
the RowStatus attribute to check if another user is currently accessing the entry. If the
entry is in use, retry your request later.

Before modifying the ServiceName attributes, set the networkServiceNameRowStatus
to the notInService state. You can skip this step if you specify the attribute
modifications in a single PDU.

To modify attributes of a ServiceName indexed by the name “abc”, use the follow
steps:

1. Issue an snmp_set request to set the ServiceName “abc” to the notInService
Set the networkServiceNameRowStatus to the notInService state, specifying
networkIdIndex 100.100.0.0, the length of the name (3 characters), and the A
values of each letter in the name (97, 98, and 99, respectively).

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

2. Issue a series of snmp_set requests that assign values to the attributes of th
ServiceName in the networkServiceNameTable.

The SNMP agent processes the requests by storing the values in MIB cache.
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

3. Issue an snmp_set request to commit the new entry. Set the
networkServiceNameRowStatus to the active state, specifying the
networkIdIndex 100.100.0.0, the length of the name, and the ASCII values o
each letter in the name.

The SNMP agent processes the request by committing the new entry to the s
and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2) to the MIB client.

Figure 4-10 shows the request-response message flow between the MIB client, th
SNMP agent, and the database when modifying the ServiceName binding.

Figure 4-10 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning with snmp_setResponse, a v2 agent sends
snmp_Response.
NavisXtend Provisioning Server User’s Guide 11/16/984-35

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
Figure 4-10. Modifying a ServiceName Indexed by Name

MIB Client SNMP Agent

1

3

snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == notInService

NavisCore
Database

snmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == notInService

2 snmp_set (setting attributes of networkServiceNameTable)

snmp_setResponse == noError

snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active

commitsnmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active

Ascend Switch
4-3611/16/98 NavisXtend Provisioning Server User’s Guide

Using the SNMP MIB
Using the MIB

Beta Draft Confidential

. Set

SCII

the

ent

e

Example 12: set command to Delete a ServiceName Indexed by
Name

Before deleting an object, perform an snmp_get request on the RowStatus attribute to
check if another user is currently accessing the object. If the object is in use, retry your
request later.

To delete a ServiceName indexed by the name “abc”, use the following steps:

1. Issue an snmp_set request to set the ServiceName “abc” to the destroy state
the networkServiceNameRowStatus to the destroy state, specifying the
networkIdIndex 100.100.0.0, the length of the name (3 characters), and the A
values of each letter in the name (97, 98, and 99, respectively).

The SNMP agent processes the request by committing the modified entry to
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2).

Figure 4-11 shows the request-response message flow between the MIB client, th
SNMP agent, and the database when deleting the ServiceName.

Figure 4-11 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning with snmp_setResponse, a v2 agent sends
snmp_Response.
NavisXtend Provisioning Server User’s Guide 11/16/984-37

Using the SNMP MIB
Using the MIB

Beta Draft Confidential
Figure 4-11. Deleting a ServiceName Indexed by Name

MIB Client SNMP Agent

1 snmp_set networkServiceNaemRowStatus.100.100.0.0.3.97.98.99 == destroy

NavisCore
Database

commitsnmp_setResponse == noError

Ascend Switch
4-3811/16/98 NavisXtend Provisioning Server User’s Guide

Index

A

API usage
recompiling an existing application 2-28
writing a C program 1-49, 2-27
writing a C++ program 1-50, 2-27

Application Toolkit
installation instructions 2-3 to 2-9
installed files 2-10 to 2-11
overview 1-3 to 1-4
post-installation tasks 2-7 to 2-9
recompiling an existing application 2-28
un-installation instructions 2-27
upgrading an existing application 2-28
writing a provisioning application 2-27

Aps
object ID 1-18
operations and limitations 1-21

Argument list
for the CLI 1-41
in C 1-41
in C++ 1-41
methods for specifying variable arguments 1-7,

1-49
AssignedSvcSecScn

object ID 1-18
operations and limitations 1-21

Asynchronous functions 1-4 to 1-7
Asynchronous Transfer Mode. See ATM
ATM Network Interworking for Frame Relay NNI

object ID 1-19
ATM Transport for FR NNI LPorts object ID 1-19
ATM Virtual UNI LPorts object ID 1-19
Attribute list. See Argument list
Attributes, how represented for the CLI 3-3
Automatic Protection Switching. See Aps

C

C
argument list 1-41
interface for API functions 1-3
writing a program 1-49, 2-27

C++
argument list 1-41
interface for API functions 1-3
writing a program 1-50, 2-27

Cache, used to store MIB data in memory 2-19,
4-12 to 4-15

Card
object ID 1-19
operations and limitations 1-21

Card status checking
disabling 2-20

CardTca
object ID 1-18
operations and limitations 1-21

Channel
object ID 1-19
operations and limitations 1-22

ChanPerformanceMonitor
object ID 1-18
operations and limitations 1-22

Circuit
DLCI for Frame Relay circuits 1-19
object ID 1-19
object ID for ATM Network Interworking for

Frame Relay NNI 1-19
operations and limitations 1-23
VCI for ATM circuits 1-19
VPI for ATM circuits 1-19

Class B addressing 1-49
NavisXtend Provisioning Server User’s Guide Index-1

Index
CLI
argument list 1-41
commands 3-5 to 3-27
controlling SNMP parameters 2-14
defined 1-3, 3-1
enclosing strings in quotes 3-3
examples 3-30 to 3-42
identifying the Provisioning Server to the CLI

2-12
installed files 2-10
specifying abbreviated attribute IDs 3-3
specifying abbreviated enumerated attribute val-

ues 3-3
specifying modification type 2-12
specifying retry behavior 2-13
specifying security settings 2-14
stopping and restarting 2-22
testing the CLI 2-9
troubleshooting problems 2-22 to 2-26
usage 3-1 to 3-4
writing a provisioning script 2-27

Client include files 2-10 to 2-11
Client libraries 2-10
Column access specifiers in MIB tables 4-8
Command Error Table 2-19, 2-21, 4-2, 4-11
Command Line Interface. See CLI
Community name, for authentication and ac-

cess-control 2-20, 4-2
Configuration variables. See Environment vari-

ables
Containment hierarchy 1-16 to 1-17
Core file, specifying location 2-17
Customer

object ID 1-18
operations and limitations 1-24

CvArgId.H header file 2-11
CvClient.H header file 2-10
CvDefs.H header file 2-10
CvE164Address.H header file 2-11
CvErrors.H header file 2-11
CvErrors.h header file 2-11
CvObjectId.H header file 2-11
CvObjectType.H header file 2-10
CvParamValues.H header file 2-11

CvSVCAddress.H header file 2-11
CvUSL.H header file 2-11

D

Data link connection identifier. See DLCI
Database locking, for MIB objects 4-13 to 4-15
DefinedPath

object ID 1-18
operations and limitations 1-24

Disabling card status checking 2-20
DLCI, for Frame Relay circuits 1-19

E

Environment variables
configuring the CLI 2-12 to 2-14
configuring the MIB 2-19 to 2-21
configuring the Provisioning client 2-14 to 2-15
configuring the Provisioning Server 2-15 to 2-22

Extended Super Frame. See Pfdl

F

Files installed with Provisioning Server and Appli-
cation Toolkit 2-10 to 2-11

FR NNI LPort object ID 1-19
Functions

asynchronous 1-4 to 1-7
naming conventions 1-7
operational functions 1-8, 1-8 to 1-9, 1-49, 1-50
select loop processing functions 1-8, 1-10, 1-49,

1-50
session control functions 1-8, 1-49, 1-50
synchronous 1-4 to 1-5
utility functions 1-8, 1-10 to 1-12, 1-49, 1-50
Index-2 NavisXtend Provisioning Server User’s Guide

Index
H

Header files 2-10 to 2-11

I

Include files for client 2-10 to 2-11
Installation instructions 2-3 to 2-9
Installed files

for CLI 2-10
for MIB 4-2
for Provisioning Server and Application Toolkit

2-10 to 2-11

L

Libraries for client 2-10
Locked database 1-2, 2-19, 4-13 to 4-15
Logical port. See LPort
LPort

object ID 1-19
object ID for ATM Transport for FR NNI LPorts

1-19
object ID for ATM Virtual UNI LPorts 1-19
operations and limitations 1-25
start VPI for Virtual UNI LPort 1-25

M

MIB
cache 2-19, 4-12 to 4-15
column access specifiers 4-8
Command Error Table 4-2, 4-11
community name 4-2
compiling 4-1
controlling object locking 2-19, 4-13 to 4-15
examples 4-16 to 4-38
identifying agent port 2-16
installed file 4-2
ModifyType attribute 4-9
NumRetries attribute 4-9
OID for MIB objects 4-3

overview 1-3
row aliasing 4-7
RowStatus attribute 4-8
SNMP commands supported 4-11
specifying an OID 4-16 to 4-38
structure 4-2 to 4-10
various tables of 4-3 to 4-7
viewing 4-1

MLFRBinding
operations and limitations 1-26

ModifyType attribute in MIB tables 4-9

N

Naming conventions
for functions 1-7
for object IDs 1-18

NavisXtend Provisioning Server Application Tool-
kit. See Application Toolkit.

NavisXtend Provisioning Server. See Provisioning
Server

NetCac
object ID 1-18
operations and limitations 1-26

Network
object ID 1-20
operations and limitations 1-26

NumRetries attribute in MIB tables 4-9

O

Object Attributes 1-41
Object ID

Aps 1-18
AssignedSvcSecScn 1-18
ATM Network Interworking for Frame Relay

NNI 1-19
ATM Transport for FR NNI LPorts 1-19
card 1-19
CardTca 1-18
channel 1-19
ChanPerformanceMonitor 1-18
circuit 1-19
NavisXtend Provisioning Server User’s Guide Index-3

Index
customer 1-18
defined 1-12
DefinedPath 1-18
for the CLI 1-13
in C 1-13
in C++ 1-13
LPort 1-19
naming conventions 1-18
NetCac 1-18
network 1-20
PerformanceMonitor 1-18
PFdl 1-18
PMPCkt 1-20
PMPCktRoot 1-20
PMPSpvcLeaf 1-19
PMPSpvcRoot 1-20
PnniNode 1-18
PPort 1-19
PPortTca 1-18
Reference Time Server 1-20
ServiceName 1-18
ServiceName endpoint 1-19
SMDS address prefix 1-20
SMDS alien group address 1-20
SMDS alien individual address 1-20
SMDS country code 1-20
SMDS group screen 1-18
SMDS individual screen 1-18
SMDS local individual address 1-20
SMDS netwide group address 1-20
SMDS switch group address 1-20
Spvc 1-20
SvcAddress 1-20
SvcConfig 1-18
SvcCUG 1-18
SvcCUGMbr 1-18
SvcCUGMbrRule 1-18
SvcNetworkId 1-20
SvcNodePrefix 1-20
SvcPrefix 1-20
SvcSecScn 1-18
SvcSecScnActParam 1-18
SvcUserPart 1-20
switch 1-20
TrafficDesc 1-18

TrafficShaper 1-19
Trunk 1-18
VpciTable 1-20
VPN 1-18

Object identifier. See Object ID
Object types, supported 1-13 to 1-38
Operational functions 1-8, 1-8 to 1-9

P

PerformanceMonitor
object ID 1-18
operations and limitations 1-27

PFdl
object ID 1-18
operations and limitations

Physical port. See PPort
PMPCkt

object ID 1-20
operations and limitations 1-27

PMPCktRoot
object ID 1-20
operations and limitations 1-28

PMPSpvcLeaf
object ID 1-19
operations and limitations 1-28

PMPSpvcRoot
object ID 1-20
operations and limitations 1-28

PnniNode
object ID 1-18
operations and limitations 1-28

Point-to-MultiPoint circuit leaf. See PMPCkt
Point-to-MultiPoint circuit root. See PMPCkRoot
Point-to-MultiPoint SPVC leaf. See PMPSpvcLeaf
Point-to-MultiPoint SPVC root. See

PMPSpvcRoot
Post-installation tasks 2-7 to 2-9
PPort

object ID 1-19
operations and limitations 1-29

PPortTca
object ID 1-18
operations and limitations 1-29
Index-4 NavisXtend Provisioning Server User’s Guide

Index
Prerequisites
network 2-3
Provisioning client 2-2
Provisioning Server 2-1 to 2-2

Programming files 2-10 to 2-11
ProvClient.h header file 2-10
Provisioning client

controlling SNMP parameters 2-15
enabling a trace file 2-15

Provisioning script. See CLI
Provisioning Server

controlling context timeout 2-18
controlling SMDS addresses 2-21
controlling SNMP parameters 2-18
enabling trace files 2-17
identifying the MIB agent port 2-16
identifying the Provisioning Server port 2-16
implementing security 2-21 to 2-22
installation instructions 2-3 to 2-9
installed files 2-10 to 2-11
MIB overview 1-3
OID for MIB objects 4-3
overview 1-1 to 1-3
post-installation tasks 2-7 to 2-9
SNMP agent 4-2
specifying community strings 2-20, 4-2
specifying core file location 2-17
stopping and restarting 2-22
testing the server 2-8
troubleshooting problems 2-22 to 2-26
un-installation instructions 2-27

R

Reference Time Server
object ID 1-20

RefTimeServer
operations and limitations 1-29

Row aliasing in MIB tables 4-7
RowStatus attribute in MIB tables 4-8

S

Sample code 2-10
Security settings

CLI 2-14
Provisioning Server 2-21 to 2-22

Select loop processing functions 1-8, 1-10
Server port, identifying 2-16
ServiceName

object ID 1-18
operations and limitations 1-29

ServiceName endpoint, object ID 1-19
Session control functions 1-8
SMDS address prefix

object ID 1-20
operations and limitations 1-29

SMDS alien group address
object ID 1-20
operations and limitations 1-30

SMDS alien individual address
object ID 1-20
operations and limitations 1-30

SMDS country code
object ID 1-20
operations and limitations 1-30

SMDS group screen
object ID 1-18
operations and limitations 1-31

SMDS individual screen
object ID 1-18
operations and limitations 1-31

SMDS local individual address
object ID 1-20
operations and limitations 1-31

SMDS netwide group address
object ID 1-20
operations and limitations 1-31

SMDS SSI individual address, operations and limi-
tations 1-31

SMDS switch group address
object ID 1-20
operations and limitations 1-32

SNMP agent 4-2
SNMP commands supported by the Provisioning

Server 4-11
NavisXtend Provisioning Server User’s Guide Index-5

Index
SNMP parameters
CLI 2-14
Provisioning client 2-15
Provisioning Server 2-18

Spvc
object ID 1-20
operations and limitations 1-32

Start VPI for Virtual UNI LPort 1-25
Stopping and restarting

CLI 2-22
Provisioning Server 2-22

Strings, enclosing strings in quotes 3-3
SVC addressing 1-44 to 1-48
SVC closed user group member rule. See Svc-

CUGMbrRule
SVC closed user group member. See SvcCUGMbr
SVC closed user group. See SvcCUG
SVC security screen action param. See SvcSecSc-

nActParam
SVC security screen. See SvcSecScn
SvcAddress

object ID 1-20
operations and limitations 1-32

SvcConfig
object ID 1-18
operations and limitations 1-33

SvcCUG
object ID 1-18
operations and limitations 1-33

SvcCUGMbr
object ID 1-18
operations and limitations 1-33

SvcCUGMbrRule
object ID 1-18
operations and limitations 1-34

SvcNetworkId
object ID 1-20

SvcNodePrefix
object ID 1-20
operations and limitations 1-34

SvcPrefix
object ID 1-20
operations and limitations 1-35

SvcSecScn
object ID 1-18
operations and limitations 1-36

SvcSecScnActParam
object ID 1-18
operations and limitations 1-36

SvcUserPart
object ID 1-20
operations and limitations 1-36

Switch
object ID 1-20
operations and limitations 1-36

Synchronous functions 1-4 to 1-5

T

Testing
CLI 2-9
Provisioning Server 2-8

Trace file
enabling client trace file 2-15
enabling server trace files 2-17

TrafficDesc
object ID 1-18
operations and limitations 1-37

TrafficShaper
object ID 1-19
operations and limitations 1-37

Troubleshooting problems 2-22 to 2-26
Trunk

object ID 1-18
operations and limitations 1-38

U

Un-installation instructions 2-27
Utility functions 1-8, 1-10 to 1-12

V

Variable argument list 1-7, 1-49
VCI for ATM circuits 1-19
Index-6 NavisXtend Provisioning Server User’s Guide

Index
Virtual Channel Identifier. See VCI
Virtual Path Identifier. See VPI
VpciTable

object ID 1-20
operations and limitations 1-38

VPI (start) for Virtual UNI LPort 1-25
VPI for ATM circuits 1-19
VPN

object ID 1-18
operations and limitations 1-38

W

Writing a provisioning script using CLI 2-27
Writing programs

basic steps in C 1-49, 2-27
basic steps in C++ 1-50, 2-27
recompiling existing application 2-28
upgrading an existing application 2-28
NavisXtend Provisioning Server User’s Guide Index-7

	LIBRARY
	Table of Contents
	About This Guide
	What You Need to Know
	Documentation Reading Path
	How to Use This Guide
	What’s New in This Release?
	What’s New in This Guide?
	Conventions
	Related Documents
	Customer Comments
	Customer Support
	Terminology

	Overview
	NavisXtend Provisioning Server
	Application Toolkit
	Synchronous and Asynchronous Functions
	Functions That Take an Argument List
	Function Names

	Toolkit Functionality
	Session Control Functions
	Operational Functions
	Select Loop Processing Functions
	Utility Functions

	Managed Objects
	Object Types
	Containment Hierarchy
	Naming Conventions for Objects
	Descriptions of Object Types
	CVT_Aps
	CVT_AssignedSvcSecScn
	CVT_Card
	CVT_CardTca
	CVT_ChanPerformanceMonitor
	CVT_Channel
	CVT_Circuit
	CVT_Customer
	CVT_DefinedPath
	CVT_LPort
	CVT_MLFRBinding
	CVT_NetCac
	CVT_Network
	CVT_PerformanceMonitor
	CVT_PFdl
	CVT_PMPCkt
	CVT_PMPCktRoot
	CVT_PMPSpvcLeaf
	CVT_PMPSpvcRoot
	CVT_PnniNode
	CVT_PPort
	CVT_PPortTca
	CVT_RefTimeServer
	CVT_ServiceName
	CVT_SmdsAddressPrefix
	CVT_SmdsAlienGroupAddress
	CVT_SmdsAlienIndividualAddress
	CVT_SmdsCountryCode
	CVT_SmdsGroupScreen
	CVT_SmdsIndividualScreen
	CVT_SmdsLocalIndividualAddress
	CVT_SmdsNetwideGroupAddress
	CVT_SmdsSSIIndividualAddress
	CVT_SmdsSwitchGroupAddress
	CVT_Spvc
	CVT_SvcAddress
	CVT_SvcConfig
	CVT_SvcCUG
	CVT_SvcCUGMbr
	CVT_SvcCUGMbrRule
	CVT_SvcNetworkId
	CVT_SvcNodePrefix
	CVT_SvcPrefix
	CVT_SvcSecScn
	CVT_SvcSecScnActParam
	CVT_SvcUserPart
	CVT_Switch
	CVT_TrafficDesc
	CVT_TrafficShaper
	CVT_Trunk
	CVT_VPCITable
	CVT_VPN

	Valid Object Types for Operational Functions
	Object Attributes
	Circuit Provisioning
	Related Error Reporting
	Environment Variable to Override Status Check

	Bit Mask
	SVC Addressing
	String Conversion
	E.164native
	AESA Addresses
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	DefaultRoute
	UserPart
	X.121

	Class B Addressing
	General API Usage
	C Program
	C++ Program

	Installation and Administration
	Prerequisites
	Provisioning Server Requirements
	Server Hardware
	Server Software

	Provisioning Client Requirements
	Client Hardware
	Client Software

	Switch Requirements
	Network Requirements

	Installation Instructions
	Installing the Provisioning Software in a Single-System Configuration
	Installing the Provisioning Software in a Two-System Configuration
	Post-Installation Tasks
	Modifying the Configuration File
	Testing the Server
	Setting Environment Variables
	Testing the CLI
	Recompiling an Existing Provisioning Client

	Installed Files
	Programming Files

	Setting Environment Variables
	Configuring the CLI
	Identifying the Provisioning Server to the CLI
	Specifying Modification Type
	Specifying Retry Behavior
	Specifying Security Settings
	Controlling SNMP Parameters

	Configuring the Provisioning Client
	Enabling a Client Trace File
	Controlling SNMP Parameters

	Configuring the Provisioning Server
	Identifying the Provisioning Server Port
	Identifying the MIB Agent Port
	Specifying the Core File Location
	Enabling Server Trace Files
	Controlling SNMP Parameters
	Controlling Context Timeout
	Controlling MIB Cache
	Controlling Object Locking
	Disabling Card Status Checking
	Specifying Community Strings
	Controlling SMDS Addresses
	Implementing the Security Feature

	Stopping and Restarting the Provisioning Server
	Stopping and Restarting the CLI
	Troubleshooting Problems
	Problem: Requests Frequently Time Out
	Symptoms
	Possible Causes and Solutions

	Problem: Object Is Locked by Others
	Symptoms
	Possible Causes and Solutions

	Technical Support
	Information Checklist

	Un-installation Instructions

	Writing a Provisioning Application
	Upgrading an Existing Application

	Using the CLI
	Using the CLI
	CLI Usage Overview
	Syntax

	cvadd
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvaddmember
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvCreateChanPerformanceMonitorId
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvdelete
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvdeletemember
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvget
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvgetdiag
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvgetoperinfo
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvhelp
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvlistallcontained
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvlistcontained
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvmodify
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvstartdiag
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvstopdiag
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvupdatediag
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	CLI Examples
	Sample CLI Format
	CVT_APS
	CVT_AssignedSvcSecScn
	CVT_Card
	CVT_CardTca
	CVT_Channel
	CVT_Circuit
	ServiceName Endpoints
	LPort Endpoints

	CVT_Customer
	CVT_DefinedPath
	CVT_LPort
	CVT_NetCac
	CVT_PerformanceMonitor
	CVT_PFdl
	CVT_PMPCkt
	CVT_PMPCktRoot
	CVT_PMPSpvcLeaf
	CVT_PMPSpvcRoot
	CVT_PnniNode
	CVT_PPort
	CVT_PPortTca
	CVT_RefTimeServer
	CVT_ServiceName
	CVT_SmdsAddressPrefix
	CVT_SmdsAlienGroupAddress
	CVT_SmdsAlienIndividualAddress
	CVT_SmdsCountryCode
	CVT_SmdsGroupScreen
	CVT_SmdsIndividualScreen
	CVT_SmdsLocalIndividualAddress
	CVT_SmdsNetwideGroupAddress
	CVT_SmdsSwitchGroupAddress
	CVT_Spvc
	CVT_SvcAddress
	CVT_SvcConfig
	CVT_SvcCUG
	CVT_SvcCUGMbr
	CVT_SvcCUGMbrRule
	CVT_SvcNetworkId
	CVT_SvcNodePrefix
	CVT_SvcPrefix
	CVT_SvcSecScn
	CVT_SvcSecScnActParam
	CVT_SvcUserPart
	CVT_Switch
	CVT_TrafficDesc
	CVT_TrafficShaper
	CVT_Trunk
	CVT_VPCITable
	CVT_VPN

	Using the SNMP MIB
	About the Enterprise-specific MIB
	Community Strings

	MIB Structure
	Segmented Information in Multiple Tables
	Row Aliasing
	Column Access Specifiers
	Additional Table Entries
	RowStatus Attribute
	ModifyType Attribute
	NumRetries Attribute

	Using the MIB
	Using the SNMP Commands
	Command Error Table
	MIB Cache and Database Locking
	Row Creation
	Row Modification
	get-next Operations

	Specifying the Object Identifier
	Example 1: get Command
	Example 2: get-next Command
	Example 3: set Command to Create an ATM LPort
	Example 4: set command to Modify an ATM LPort
	Example 5: set Command to Delete an ATM LPort
	Example 6: set Command to Create an ATM Circuit
	Example 7: set Command to Modify an ATM Circuit
	Example 8: set Command to Delete an ATM Circuit
	Example 9: set Command to Create a VPN Indexed by Name
	Example 10: set Command to Create a ServiceName Indexed by Name
	Example 11: set command to Modify a ServiceName Indexed by Name
	Example 12: set command to Delete a ServiceName Indexed by Name

	Index

