NavisXtend
Provisioning Server
User’s Guide

Ascend Communications, Inc.

Product Code: 80065
Revision 00
November 1998



Copyright © 1998 Ascend Communications, Inc. All Rights Reserved.

This document contains information that is the property of Ascend Communications,
Inc. This document may not be copied, reproduced, reduced to any electronic medium
or machine readable form, or otherwise duplicated, and the information herein may
not be used, disseminated or otherwise disclosed, except with the prior written consent
of Ascend Communications, Inc.

NavisXtend Provisioning Server User’s Guide



ASCEND COMMUNICATIONS, INC. END-USER LICENSE AGREEMENT

ASCEND COMMUNICATIONS, INC. ISWILLING TO LICENSE THE ENCLOSED
SOFTWARE AND ACCOMPANY ING USER DOCUMENTATION (COLLECTIVELY,

THE “PROGRAM”) TO YOU ONLY UPON THE CONDITION THAT YOU ACCEPT ALL
OF THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT. PLEASE READ
THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY
BEFORE OPENING THE PACKAGE(S) OR USING THE ASCEND SWITCH(ES)
CONTAINING THE SOFTWARE, AND BEFORE USING THE ACCOMPANYING USER
DOCUMENTATION. OPENING THE PACKAGE(S) OR USING THE ASCEND
SWITCH(ES) CONTAINING THE PROGRAM WILL INDICATE YOUR ACCEPTANCE
OF THE TERMS OF THIS LICENSE AGREEMENT. IF YOU ARE NOT WILLING TO BE
BOUND BY THE TERMS OF THIS LICENSE AGREEMENT, ASCEND IS UNWILLING
TO LICENSE THE PROGRAM TO YOU, IN WHICH EVENT YOU SHOULD RETURN
THE PROGRAM WITHIN TEN (10) DAYS FROM SHIPMENT TO THE PLACE FROM
WHICH IT WAS ACQUIRED, AND YOUR LICENSE FEE WILL BE REFUNDED. THIS
LICENSE AGREEMENT REPRESENTS THE ENTIRE AGREEMENT CONCERNING
THE PROGRAM BETWEEN YOU AND ASCEND, AND IT SUPERSEDES ANY PRIOR
PROPOSAL, REPRESENTATION OR UNDERSTANDING BETWEEN THE PARTIES.

1. License Grant. Ascend hereby grants to you, and you accept, a non-exclusive,
non-transferable license to use the computer software, including all patches, error

corrections, updates and revisions thereto in machine-readable, object code form only

(the “Software”), and the accompanying User Documentation, only as authorized in
this License Agreement. The Software may be used only on a single computer owned,
leased, or otherwise controlled by you; or in the event of inoperability of that
computer, on a backup computer selected by you. You agree that you will not pledge,
lease, rent, or share your rights under this License Agreement, and that you will not,
without Ascend’s prior written consent, assign or transfer your rights hereunder. You
agree that you may not modify, reverse assemble, reverse compile, or otherwise
translate the Software or permit a third party to do so. You may make one copy of the
Software and User Documentation for backup purposes. Any such copies of the
Software or the User Documentation shall include Ascend’s copyright and other
proprietary notices. Except as authorized under this paragraph, no copies of the
Program or any portions thereof may be made by you or any person under your
authority or control.

2. Ascend’s Rights.You agree that the Software and the User Documentation are
proprietary, confidential products of Ascend or Ascend's licensor protected under US
copyright law and you will use your best efforts to maintain their confidentiality. You
further acknowledge and agree that all right, title and interest in and to the Program,
including associated intellectual property rights, are and shall remain with Ascend or
Ascend’s licensor. This License Agreement does not convey to you an interest in or to
the Program, but only alimited right of use revocable in accordance with the terms of
this License Agreement.

NavisXtend Provisioning Server User's Guide iii



3. License Fees. Thelicense fees paid by you are paid in consideration of the license
granted under this License Agreement.

4. Term. ThisLicense Agreement is effective upon your opening of the package(s) or
use of the switch(es) containing Software and shall continue until terminated. You
may terminate this License Agreement at any time by returning the Program and all
copies or portions thereof to Ascend. Ascend may terminate this License Agreement
upon the breach by you of any term hereof. Upon such termination by Ascend, you
agree to return to Ascend the Program and all copies or portions thereof. Termination
of this License Agreement shall not prejudice Ascend’s rights to damages or any other
available remedy.

5. Limited Warranty. Ascend warrants, for your benefit alone, for a period of 90

days from the date of shipment of the Program by Ascend (the “Warranty Period”) that
the program diskettes in which the Software is contained are free from defects in
material and workmanship. Ascend further warrants, for your benefit alone, that
during the Warranty Period the Program shall operate substantially in accordance with
the User Documentation. If during the Warranty Period, a defect in the Program
appears, you may return the Program to the party from which the Program was
acquired for either replacement or, if so elected by such party, refund of amounts paid
by you under this License Agreement. You agree that the foregoing constitutes your
sole and exclusive remedy for breach by Ascend of any warranties made under this
AgreementEXCEPT FOR THE WARRANTIES SET FORTH ABOVE, THE PROGRAM

IS LICENSED “AS IS”, AND ASCEND DISCLAIMS ANY AND ALL OTHER

WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING,

WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTIES OF
NONINFRINGEMENT.

6. Limitation of Liability. Ascend’'s cumulative liability to you or any other party

for any loss or damages resulting from any claims, demands, or actions arising out of
or relating to this License Agreement shall not exceed the greater of: (i) ten thousand
US dollars ($10,000) or (ii) the total license fee paid to Ascend for the use of the
Program. In no event shall Ascend be liable for any indirect, incidental, consequential,
special, punitive or exemplary damages or lost profits, even if Ascend has been
advised of the possibility of such damages.

NavisXtend Provisioning Server User’s Guide



7. Proprietary Rights Indemnification. Ascend shall at its expense defend you

against and, subject to the limitations set forth el sewhere herein, pay al costs and

damages made in settlement or awarded against you resulting from a claim that the

Program as supplied by Ascend infringes a United States copyright or a United States

patent, or misappropriates a United States trade secret, provided that you: (a) provide
prompt written notice of any such claim, (b) allow Ascend to direct the defense and
settlement of the claim, and (c) provide Ascend with the authority, information, and
assistance that Ascend deems reasonably necessary for the defense and settlement of

the claim. You shall not consent to any judgment or decree or do any other act in
compromise of any such claim without first obtaining Ascend’s written consent. In
any action based on such a claim, Ascend may, at its sole option, either: (1) obtain for
you the right to continue using the Program, (2) replace or modify the Program to
avoid the claim, or (3) if neither (1) nor (2) can reasonably be effected by Ascend,
terminate the license granted hereunder and give you a prorata refund of the license
fee paid for such Program, calculated on the basis of straight-line depreciation over a
five-year useful life. Notwithstanding the preceding sentence, Ascend will have no
liability for any infringement or misappropriation claim of any kind if such claim is
based on: (i) the use of other than the current unaltered release of the Program and
Ascend has provided or offers to provide such release to you for its then current
license fee, or (ii) use or combination of the Program with programs or data not
supplied or approved by Ascend to the extent such use or combination caused the
claim.

8. Export Control. You agree not to export or disclose to anyone except a United
States national any portion of the Program supplied by Ascend without first obtaining
the required permits or licenses to do so from the US Office of Export Administration,
and any other appropriate government agency.

9. Governing Law. This License Agreement shall be construed and governed in
accordance with the laws and under the jurisdiction of the Commonwealth of
Massachusetts, USA. Any dispute arising out of this Agreement shall be referred to an
arbitration proceeding in Boston, Massachusetts, USA by the American Arbitration
Association.

10. Miscellaneous. If any action is brought by either party to this License

Agreement against the other party regarding the subject matter hereof, the prevailing
party shall be entitled to recover, in addition to any other relief granted, reasonable
attorneys’ fees and expenses of arbitration. Should any term of this License
Agreement be declared void or unenforceable by any court of competent jurisdiction,
such declaration shall have no effect on the remaining terms hereof. The failure of
either party to enforce any rights granted hereunder or to take action against the other
party in the event of any breach hereunder shall not be deemed a waiver by that party
as to subsequent enforcement of rights or subsequent actions in the event of future
breaches.

NavisXtend Provisioning Server User's Guide %



Chapter 1

Contents

About This Guide

What Y OU NEed t0 KNOW ..ottt Xvii
Documentation Reading Path ............cooooiiiiiiieeee e Xviii
HOW tO USE TIS GUITE........eeeieeieieeie sttt nee s XiX
What's New in ThisS RelEASE? ......cccoeeiiieeie e XiX
What's NeW in ThIiS GUIAE?........uuiiiiiiiiiiiiiee ettt XXi
(©70] 01775 o1 0] 1S3OS XXi
Related DOCUMENES ...ttt et e ettt e e e e e e e e e e e eeeeeeeaaaaaaaaaaaaaaaaaaaens XXii
CUSTOMET COMIMENTS.....ieiiiitie ettt e et e ettt e e e e e e e e ees bbbt e e e e e e e eeeesbenaaanes XXii
(1011 (o]0 g T=T GRS U] o] oL o SO PP XXiii
TEIMINOIOTY ..ttt ettt e e e e e e e et e e e e e e e e bbb e e e e e e e aaan XXili
Overview
NavisXtend ProvisSioning SEIVEL..........ccooiiiiii i e e e e e e eeeeeeees 1-1
F Y o] o] [ To%= 11 To] g 1N o0 | | R 1-3
Synchronous and AsSynchronous FUNCLIONS ........ccoovviriiiiiiciciiiiinn e 1-4
Functions That Take an Argument LiSt...........coooiiiiiiiiiiniiieece e 1-7
[T ox 1o A F= T 4L 1-7
TOOIKIt FUNCHONAITY ... e e 1-8
SeSSIioN CONrOl FUNCLIONS .......uuiiiiiiiiiiiiiiiie et 1-8
Operational FUNCLIONS .........cooiiiiiiiiiie e e e e e e e s 1-8
Select Loop Processing FUNCHONS........uiiiiiii i ee et e e e e e e eeees 1-10
ULIlItY FUNCHIONS ....ceiiieiieeiee ettt e e 1-10
MaNAGEA ODJECLS .....eiiieiiiiiiiiiiie e 1-12
(@] ] [=Tox B Y] o2 S PO PPPPPPSPPPPPPPRPPR 1-13
Containment HIerarChy ...........ooooiiii oo e e e e e e e e eeeeeees 1-16
Naming Conventions for ODJECTS..........ooviiiiiiii e e e 1-18
Descriptions Of ODJECE TYPES....cvviiiiiii e e 1-20
(@Y Y o 1 SR 1-21
CVT_ASSIGNEUSVCSECSCN ..ottt 1-21
(O B ©F- 1o B PO PPP P PPPPPPPRPPRN 1-21
(OAV A I =T (o I o PP 1-21
CVT_ChanPerformanCeMONItOr...........uuieiiiiieeieeeeiii s e e e e e e e e eeaeens 1-22
(@A B O o - ] = 1-22

NavisXtend Provisioning Server User's Guide vii



Contents

L@V O o ¥ 1 SRS 1-23
LAV I 1 (o] 1 = S 1-24
CVT_DEfINEAPELN........coueeieceecee e e 1-24
(oY B = OO 1-25
CVT_MLFRBINAING ....eetiiiiii e sae st sae e eseeaesne e 1-26
CVT _NEICAC ...ttt sttt 1-26
LAV I N [= Yo RSSO 1-26
CVT_PerformanCelMONITOr .........cccccueieerieeseeseese e et seesaee s 1-27
(O I = o | ST 1-27
oY = V= OO 1-27
CVT_PMPCKIROOL ......coovveeeeseesseseessesensssssssssssssssssssesssssssnsssnsssnsssssssnsssessanees 1-28
CVT _PMPSPVCLEA .....ccuiiiieieie et 1-28
CVT_PMPSPVCROOL ....c.viiinieiieiisieie sttt sttt 1-28
CVT_PNINOGE.......ceeiieiieieeiete et ee e neens 1-28
(@ I = o o ST 1-29
OV = =5 4 (= VOO 1-29
CVT_REFTIMESEIVEN ..ottt 1-29
CVT _SErVICENAME ...ttt sttt nresne s 1-29
CVT_SMASAAAIrESSPIEFIX ..uvevieverieieiriesiesie st 1-29
CVT_SMAsAlienGroupAdareSS..........ccveeveereerieere st see e see e e e e 1-30
CVT_SmdsAlienIndividual Address..........coovveieeeeiene e 1-30
CVT_SMASCOUNITYCOUE.........eoveieeeiiriesieieesie st 1-30
CV T _SMOSGIOUDPSCIEEN ......eviterieeeieetesie ettt 1-31
CVT_SMAsINAiVidUaI SCreenN.........cceciiiieeeie e st 1-31
CVT_SmdsLocalndividual Address ..........cooeveiieeeie e 1-31
CVT_SMmdsNetwideGroUpAdAreSS.......cooeveeieere e see e 1-31
CVT_SmAsSSIINAiVIdUAlADArESS.........cccorveererereieeee e 1-31
CVT_SMASSWitChGroUPATAIESS..........ccerieieririirieieeeeseee e 1-32
CV T _SPVC ettt bt bbbt b e b b sse e b nnenne s 1-32
CV T _SVCAGAIESS......couiiiieieiisie ettt 1-32
LG4V IS Y o: ©o o o 1-33
(@A I Yo @1 [ 7SS 1-33
CVT_SVCCUGMDT ...ttt 1-33
CVT_SVCCUGMDBIRUIE.......coeieeeeeiesiiciieeesie et se et sae e eneeae s e 1-34
CVT_SVENEIWOIKIG......eoiiiieieiiriesieees e 1-34
CVT _SVCNOUEPTEfIX...veeueeieitiiieceeeeste sttt sae sttt st sre e naenae s 1-34
(O IS Yo 1= 1 ST 1-35
(O IS Y0 xS o o ST 1-36
CV T _SVCSECSCNACIPAIrAM ..ottt e 1-36
CV T _SVCUSEIPA ..ottt et 1-36
(@ A IS 111 (o o PSSP 1-36
CV T _TraffICDESC....ueetiiirieieieste sttt 1-37
O3V B I = oS g7 o = 1-37
(@ I 1 | ST 1-38
(oY B VA= O - o =X 1-38
(oY NV = N OO 1-38
Valid Object Types for Operational FUNCLIONS..........ccccovvirinenieineseeeeecse s 1-39
ODJECt ATLHBULES.......eeeee e e 1-41

viii

NavisXtend Provisioning Server User’s Guide



Contents

CirCUIt PrOVISIONING .....ccviivieeeieste it eieste sttt esae e te s ae e st sresseenesbesresreenaennesre e 1-41
Related Error REPOIING .....cooceriieieereeseesees et ee e st 1-42
Environment Variable to Override Status Check .........ccccoovieievrveiieesee 1-42

BIt IM@SK ...ttt st r et na e ne et e naenneneas 1-43

SV C AGArESSING.....ceeueeieeiiiterieeeiee sttt sttt e e sb et sn e ese st s e eneas 1-44
S T o @001V £ o] o PSS 1-45
ELLBANGLIVE. ...ttt ettt 1-46
AESA AQUIESSES ...ttt st st b e e s e et sne e 1-46

EXAMPIE L ... 1-46
EXAMPIE 2 ... 1-47
EXAMPIE 3 ... s 1-47
EXAMPIE 4 ...t e 1-47
EXAMPIE S ... e e e 1-48
DEfAUITROULE ......c.eeeeeieee ettt ettt ee e e 1-48
S = ST 1-48
01 RS STSSR 1-48

ClassS B AQArESSING ......cueueiirieieieisiesie ettt sttt nb s e 1-49

GENENal APl USAQE ...c.viiiceeeeees ettt sttt e s n e 1-49
(O = (070 -1 1S SRS 1-49
(Ol 100 ! S 1-50

Chapter 2 Installation and Administration

=10 DTS (=SSR 2-1

Provisioning Server REQUITEMENTS..........coveirirerieineniesieeeese s 2-1
SEIVEr HAOWEI€ ...ttt st ne et nre s 2-1
SEIVEr SOFIWEAIE......ccuiieiicieie et 2-2

Provisioning Client REQUITEMENTS...........ccoceieeieie et 2-2
ClENt HarOWaIe..........ooeeeeeeee ettt 2-2
ClIENt SOMWEAIE .....oeiiee e nae e 2-3

SWItCh REQUITEIMENES.......ceiiciieiiieeeee e 2-3

NEIWOrK REQUITEMENTS.......cuiitiieieiiriisiesie et 2-3

INStaAllatiON INSIFUCLIONS.......couiiieieeicies e e 2-3
Installing the Provisioning Software in a Single-System Configuration ........... 2-4
Installing the Provisioning Software in a Two-System Configuration .............. 2-7
POSE-INSEal[atiON TASKS ....ceeeeiieeieeee et 2-7

Modifying the Configuration File............coooveiiinininee e 2-7
TESHNG tE SEIVES ... s 2-8
Setting Environment Variables...........coeeviiiiiciese e 2-8
L= 1 0 I = O 2-9
Recompiling an Existing Provisioning Client ...........cccecoevveninninninnieennnns 2-9

INSEAHEO FIIES ...t 2-10

Programming FIlES ..o 2-10

Setting Environment VariabIes...........cciiiiiiiiieeeeee s 2-11

ConfiguriNg thE CLI ... 2-12
Identifying the Provisioning Server tothe CLI ......ccccccevveveeveevecvc e, 2-12
Specifying ModifiCation TYPE......ceveeieereereere et 2-12
Specifying REtry BENAVION...........ccviiiiiereseceeeeseseeees s 2-13
Specifying SECUrity SEIINGS.......coovvireieirerere s 2-14

NavisXtend Provisioning Server User’'s Guide



Contents

Controlling SNMP Parameters.........ccoeviieiecieeiese e 2-14
Configuring the Provisioning Client .........ccccocoevieiecsience e 2-14
Enabling aClient TraCe File........coieieeeere e 2-15
Controlling SNMP Parameters............ccoeoererereienisesieieeesesesesese s 2-15
Configuring the ProviSiONiNg SEIVES ..o 2-15
Identifying the Provisioning Server POrt ..........cccceevvveveeveevece e 2-16
Identifying the MIB Agent POrt............ccceveieceeeese e 2-16
Specifying the Core File LOCaioN.........ccccveveeveevieese e 2-17
Enabling Server TraCe Files.........ooooiiiiiieeeeee s 2-17
Controlling SNMP Parameters............ccoeoererereienineseieeeseseseeese s 2-18
Controlling Context TIMEOUL...........curirrererireeeese s 2-18
Controlling MIB CaChe ........ccooiiiiieeecece e 2-19
Controlling ObjeCt LOCKING ......cccveeerieiecieceeieeree et 2-19
Disabling Card Status CheCKinNg .......cccovevveieeiencie s e seesie e e e see e 2-20
Specifying CommUNItY SINGS........ooeererireeeese s 2-20
Controlling SMDS AGUIESSES........cc.eieieiriesieree e 2-21
Implementing the Security FELUre. ... 2-21
Stopping and Restarting the Provisioning Server ..........cccovvvveeeece v seseecese s 2-22
Stopping and Restarting the CLI ..o 2-22
Troubleshooting ProblEmMS...........cv et 2-22
Problem: Requests Frequently TIme OUL ...........ccceovriieneinineseeee e 2-23
SYMPLOMS ...t sr e e nnis 2-23
Possible Causes and SOIULIONS..........ccvccereieceeiese e 2-23
Problem: Object IsLocked by Others.........ccccoeviiiececece e 2-24

B 110100 P 2-24
Possible Causes and SOIULTONS..........coeeereieneeese e 2-24
TECNICal SUPPOIT.......eceeieeeisiee e 2-25
Information CheCKIliSt ........coeeieiee e 2-25
Un-installation INSLIUCLIONS..........eeveieieseceeese et sae st eae e ene s 2-27
Writing a Provisioning APPliCatiON .........cccocviieieie e 2-27
Upgrading an Existing AppliCation.........ccceecvecriersin e 2-28

Chapter 3 Using the CLI

L L] o 1 U= X S 31
CLI USBgE OVEIVIBW ...ttt te e e eesaeseeeneeneense e 32
Y11= TS T PRSP PRPRURRURON 3-2

072 (o 35
U001 PRSPPI 35
COMMANT SYNEAX ..ecuveeteeiecie et e e sae e e re e sae e te e teereeneeeneesneesnnas 35
PAraMELENS ... e e e 35
N[0SV URUPRRPRUPRI 35
EXBIMPIES ... 3-6

oY= o [0 [0 00] o OSSP 37
PUIDOSE .ttt s bbb st b e be e e re e b 3-7
(00 01] 0107010 RS 1= S 37
PAraMELENS ... e 3-7
N[0TV FUURUPRRPROPRPIN 3-7
EXAIMPIE. ... 3-8

X NavisXtend Provisioning Server User’s Guide



Contents

cvCreateChanPerformanceMonitord...........cooeeirenineieniesesecee e 39
1001 PSSR 39
(@000 0F= 010 RSV | 7= SR 39
PalamMELELS ..o e r e e re e ene e 39
NS, e s e e e e e e st e e e st e e e e s ae e e e s aae e e e areeeeannaee s 39
Gz 1 10 = S 39

(o[ L (USSR 3-10
U070 PR 3-10
COMMANG SYNEAX ...ttt 3-10
PalamMELErS ......ooeeeee e eane s 3-10
NOLES....cc et e e st e e e a e e e e e e e e bee e e e nee e e e nreeeenres 3-10
Gz 1 110 = SRS 3-10

(o= L= (= 1< 101 0T SO 311
0701 PR 311
COMMANG SYNEAX ...ttt 311
PalamMELELS ......ooeeeei e e nane s 311
I L0 (<SSR 311
TGz 1 10 = USSP 312

L0 < SRS 3-13
0701 PR 3-13
(000]101007= 1016 1S/ 0= USSP USSP PR 3-13
PalamMELELS ......ooeeeee e nane s 3-13
NS, e e s a e e e e e e e s e e e e b e e e e e rre e e e nreeeenres 313
s 1 10 = SO 313

(oY 0 = (o o PSSR 3-15
0701 PR 3-15
COMMANG SYNEAX ...ttt 3-15
PalamMELELS ......ooeeeeei e e nane s 3-15
NS, e e st e e et e e e e e e e e b e e e e e ree e e e nreeeenres 315
s 1 10 = USRS 3-15

(oY 0 <. (0] 0= 11 | 0TSSR 3-16
0701 R 3-16
COMMANG SYNEAX ...ttt 3-16
ParAIMELENS ... e nres 3-16
NS, e e st e e e e e e s e e e e bee e e e rre e e e nreeeenres 3-16
s 1 1] 0] = SO 3-16

L0nY ] 07 o USSR 3-17
0701 PR 3-17
COMMANG SYNEAX ...t 3-17
PalrAIMELEIS ... . e nres 317
I L0 C=-STR RSP 317
Gz 1 10 = SO 317

CVISEAICONTAINGED ... et 3-18
0701 S 3-18
COMMANG SYNEAX ...ttt 3-18
ParaIMELENS ... et nees 3-18
I L0 (<SR SR 3-18
Tz 1 10 = SRS 3-20

NavisXtend Provisioning Server User’'s Guide

Xi



Contents

CVIISLCONLAINED .......veeeneeiieiisieee ettt 3-21
U001 PR 3-21
(000100 F= 010 RSV | 7= SRS 321
PalamMELErS ......ooee e nane s 3-21
NOLES. ..ttt st e b e e s e e e sar e e sar e e eare e sareenareas 3-21
ez 1 110 = SO 3-24

o1y 0107 11 YRS 3-25
U070 = PR 3-25
(000]101007= 1016 S/ 0= USSP PSSR P P 325
PalamMELErS ......ooeeeee e e e nane s 3-25
NOLES. ..ttt st st st s et e b e sare e b nre e e s 3-25
ez 1 110 = USSP 3-26

LoV = 11 (0 [ =" RSP SRS 3-27
U 10701 R 3-27
(000]101007= 1016 S/ 0= USSR U SRS P R 3-27
PalamMELErS ......ooeeeee et e nane s 3-27
NOLES. ..ttt st st e st e e b e sare e sbe e nre e nare s 3-27
EXAMPIES ...ttt re et renre s 3-27

LoV (0] o 0 1= o [ RSP RRSN 3-28
0701 PR 3-28
(000]101007= 1016 )Y/ 0| = USSR PSSR P R 3-28
PalamMELELS ......ooeeeee e nre e e 3-28
NNOLES. ..ttt ettt e st e e st e sabe e sbe e sare e nareas 3-28
s 10 = OSSO 3-28

LoV H 0] 1= =0 [F= o [ SRS RSSN 3-29
0701 PR 3-29
COMMANG SYNEAX ...ttt 3-29
PalramMELErS ......ooeeeee e naee s 3-29
NOLES. ..ttt st e st e st e b e sar e e b e s re e nnre s 3-29
s 1 1o)== PSSO 3-29

(O I I T 11 0o - 3-30
SAMPIE CLI FOIMAEL ......oociece e sre s 3-30
O AN = TSRS 3-30
CVT_ASSIGNEASVCSECSCN ...ttt 3-30
L@V I o TSRS 3-31
(@A I O o | o= H SRS 3-31
(@A I O 17 19 = ST 3-31
(@3 I 11 (U ST 3-31

ServiceName ENAPOINES.........covereirireieeresesee s 331

L POt ENAPOINS....c.eeueeiiiiiieieieiesiesiee ettt 3-32
(OAV N I O0 1 (o] 1 = P TRRSPR 3-33
CVT_DEfINEAPELN........coiiiieeeeceees e 3-33
(@3 I o ST 3-33
LAV I N[ (O oSS 3-35
CVT_PerformanCeMONITOr .........cccoviieieieresesieee e se e sae e e eseense e sneas 3-35
(O I = o | SRS 3-35
CVT _PMPCKL ..ottt sttt 3-35

Xii

NavisXtend Provisioning Server User’s Guide



Contents

Chapter 4

CVT_PMPCKIROOL ......covirieieiisiiriesie s 3-35
CVT _PMPSPVCLEA .....couieeeiieiesie ettt 3-36
CVT_PMPSPVCROOL .....eeiiieiieiesiesieieesie e sesestesee e se e ssesseseenessessessenens 3-36
CVT _PNNINOGE. ... .cceeeeeeee ettt aenne e 3-37
(@ I = o 5 ST 3-37
(O I = o1 o= USSP 3-37
CVT _REFTIMESEIVEY ......oivicieceeecte sttt st st st sreene s 3-37
CVT_SEIVICENAITIE ...cei et te ettt s e e s e e e reesre e 3-37
CVT_SMASAAAIrESSPIEfIX ..cuveveeveiieieieiesie e 3-37
CVT_SMASAIENGrOUPAAIESS.........ccoviirieeresiesieeeese e 3-37
CVT_SmdsAlienIndividual AdOreSS..........ccoveerinieieineseeeese e 3-37
CVT_SMASCOUNLIYCOUE........ccueeeeeeciictieieiee ettt sre e eae e nne 3-38
CVT _SMOASGIOUPSCIEEN ...t iveeeeeteete et eteesteste st s e steste e sreeaesaestesresseesensesrens 3-38
CVT_SMASINdiVidUaI SCIEEN........coveeieereeseere e 3-38
CVT_SmdsLocalndividual AddreSS ........ccooeriiieee e 3-38
CVT_SmAsNetwideGroUPATArESS..........ooveerirereeeesiesieeeese e 3-38
CVT_SMASSWitChGroUPAAIESS..........cccuruiierererieieere e 3-38
CV T _SPVC ittt ettt sttt b ettt 3-38
CV T _SVCAAIESS......couiitiiieieiiste ettt sttt n e 3-38
LAY B Y o: @o o o 3-39
(@ IS Yo @1 [ S 3-39
CVT_SVCCUGMDT ..ottt e 3-39
CVT_SVCCUGMDBIRUIE.......ccoiiiiiiieriiereeeese e 3-39
CVT _SVCNEIWOIKI.....eciiieicieceeesie sttt st 3-39
CVT_SVCNOUEPTEfIX...vecueeiiitiiticeeieste st see sttt st st nae st 3-40
(O IS Y (o = 1 ST 3-40
(O IS Y0 1S o o ST 3-40
CVT_SVCSECSCNACIPAIAM ......cuvvveieietisiisieeeieete et saeeens 3-40
CV T _SVCUSEIPAIT ...ttt 3-40
CV T _SWITCN ..ttt et 3-40
CV T _TraffICDESC ...ttt 341
O3V B I = 00 7= 1o = 341
L@V I 1V o |G 341
(O YA = O I I o TSRS 3-42
(@ A Y4 = N SRS 3-42

Using the SNMP MIB

About the Enterprise-SpeCific MIB .........ccoviiiiriciee e 4-1
COMMUNITY SEFNGS..teeteiieeieeeeeee e see e e e e seesae e reeseeeseeesreereeeeeneeeneesneesnees 4-2
IMIB SEIUCKUE ...ttt ettt ettt ae e e s saeesneenaee 4-2
Segmented Information in Multiple Tables...........ccooiiiicinneceee 4-3
ROW ALTGSING ...ttt n e 4-7
ColUuMN ACCESS SPECITIENS.....cueiviriiieiriesie e 4-8
Additional Table ENIIES .......coeieiiireseeese e 4-8
ROWSLAIUS ATITDULE. ... 4-8
ModifyType AIIDULE. .......cceeecee e 4-9
NUMRELHES ALLHIDULE. ..o e 4-9

USING TNE MIBi.....oeeeeee e bbb 4-11

NavisXtend Provisioning Server User’'s Guide

Xiii



Contents

Using the SNMP COMMANAS .......ccccieiiiiieieciese ettt ene e 4-11
Command Error Table.........ooo i 4-11
MIB Cache and Datalase LOCKING. ... .c.ccovreereerereeeeeenese e 4-12
0T @ = o] o RS 4-13
ROW MOAIfiCALION......cceeieeiicieiee e 4-14
get-NEXE OPEIALiONS......ccveivieeeeeecie e st re s re s 4-15
Specifying the Object [dentifier .........ccooveeeceiie e 4-16
Example 1: get ComMmMand..........ccceeverieeieieesen e see et 4-16
Example 2: get-next Command ...........cccoevereinenineneene s 4-17
Example 3: set Command to Createan ATM LPoOrt........cccocvvviveciecninee. 4-18
Example 4: set command to Modify an ATM LPOrt........ccocovveieincniennnne. 4-21
Example 5: set Command to Deletean ATM LPort........ccccoevvveievevnenee. 4-23
Example 6: set Command to Create an ATM Circuit.........ccccceevevevrernnee. 4-25
Example 7: set Command to Modify an ATM Circuit.........cccceeeeevveneenee. 4-28
Example 8: set Command to Delete an ATM Circuit..........ccceeevvrvneennne. 4-30
Example 9: set Command to Create a VPN Indexed by Name.................. 4-31

Example 10: set Command to Create a ServiceName Indexed by Name.. 4-33
Example 11: set command to Modify a ServiceName Indexed by Name. 4-35
Example 12: set command to Delete a ServiceName Indexed by Name... 4-37

Index

Xiv NavisXtend Provisioning Server User’s Guide



Contents

List of Figures

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 1-5.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.

Components in the NavisXtend Provisioning Server System ........ 1-2
Application Toolkit Organization.............cccceeeerereeeenese e eeeeeeens 1-4
Flow Between Client and Server for a Synchronous Function........ 1-5
Flow Between Client and Server for an Asynchronous Function ...1-6

Containment Hierarchy for Managed Objects...........cccccvvvrveneenen. 1-17
Creating an ATM LPOI........ccooiiieeece e 4-20
Modifying an ATM LPOI .....c.oooieeeeeeeceeeee e 4-22
Deletingan ATM LPort Using its VPI/VCI Pair..........ccccoeeeeeeenne. 4-24
Deleting an ATM LPort Using its Interface Number .................... 4-25
Creating an ATM CirCUIT.......cceveieerererieeeese e 4-27
Modifying an ATM Circuit Using its Circuit Number .................. 4-29
Deleting an ATM Circuit Using its Circuit Number ..................... 4-31
Creating a VPN Indexed by Name........cccccevveveevieeveevecsecneeieens 4-32
Creating a ServiceName Indexed by Name............ccccocveneinienncns 4-34
Modifying a ServiceName Indexed by Name............ccccccoovienne. 4-36
Deleting a ServiceName Indexed by Name...........c.ccccveevniiennnne. 4-38

NavisXtend Provisioning Server User’'s Guide XV



Contents

List of Tables

Table 1-1. Naming Conventions for Toolkit FUNctions..........cccccevevvieiennienne 1-7
Table 1-2. Object Types Supported by the Provisioning Server ................... 1-13
Table 1-3. Naming Conventions for OBJect ID ..........cceeeiereneicieninesen 1-18
Table 1-4. Valid Object Typesfor Operational FUNCLioNs ............cccovvveneene. 1-39
Table 1-5. Bit Mask Configuration ...........ccceveiieieerese e 1-43
Table 1-6. Calculated NBItS VEAUES ........cceeveriiriiieinesesee e 1-44
Table 2-1. Programming Files for Client Development ...........cccceevevvviennen. 2-10
Table 3-1. Valid Parent and Child Object TYPES ......cccevveevririnceeeneseeene 3-18
Table 3-2. Valid Parent and Child Object TYPES ......cccceveiveirenceeereseees 3-22
Table 4-1. Information Required for Creating Specific LPOrts ..........cc.cccee... 4-3
Table 4-2. Information Required for Creating Specific Circuits .................... 4-5
Table 4-3. Error Code Mapping from SNMPv2to SNMPV1 ...........cccceee. 4-12

XVi NavisXtend Provisioning Server User’s Guide



About This Guide

The NavisXtend Provisioning Server User’s Guidtscribes how to use the
NavisXtend™ Provisioning Server Application Toolkit to develop a provisioning
client — an application that runs on a workstation in an Astenework and
interacts with a Provisioning Server. You use the client to query and configure switch
nodes, cards, physical ports, logical ports, circuits, and other objects. The Application
Toolkit includes a special series of libraries and header files that support client
development.

In addition, the NavisXtend Provisioning Server User’s Guitscribes how to use
the Toolkit Command Line Interface (CLI) to develop a provisioning script— a set of
shell commands used for either interactive or batch provisioning of network objects.

TheNavisXtend Provisioning Server User’s Gualiso describes how to use the
enterprise-specific MIB, which provides SNM P access to the Provisioning Server.

What You Need to Know

This guide assumes that you have a working knowledge of network management and
provisioning operations. This guide assumesthat you have installed the Ascend switch
hardware.

To develop a provisioning client, you need to be familiar with programming in C or
C++ inaUNIX environment. Programming experience is notrequired if you plan to
use the Command Line Interface only.

To use the SNMP MIB, you need to be familiar with the SNMP protocol, operations
supported by the protocol, and MIB structurein general.

Be sureto read the Software Release Notice (SRN) for NavisXtend Provisioning Server
that accompanies this product. The SRN contains the most current product
information and requirements.

NavisXtend Provisioning Server User’'s Guide XVii



About This Guide
Documentation Reading Path

Documentation Reading Path

The NavisXtend Provisioning Server document set includes the following manuals:

ASCEND

NavisXtend
Provisioning Server
User’s Guide

) 4

ASCEND

NavisXtend
Provisioning Server

Programmer’s
Reference

¥

ASCEND

NavisXtend
Provisioning Server
Object Attribute
Definitions

¥

ASCEND

NavisXtend
Provisioning Server
Enterprise MIB
Definitions

If you are using the NavisXtend Provisioning Server
Application Toolkit for the first time, read the entire
NavisXtend Provisioning Server User's Guiddich
describes the interface, features, and typical applications
for the NavisXtend Provisioning Server Application
Toolkit. It explains, in step-by-step format, what is
involved in developing a provisioning client and a
provisioning script. It aso describes how to use the
SNMP MIB.

Once you are ready to begin developing a provisioning
client, use this guide for detailed information on the
NavisXtend Provisioning Server Application
Programming Interface (API).

Use this guide for detailed information on the various
object types supported by the Provisioning Server and
their associated attributes.

If you are using the SNMP MIB to access the
Provisioning Server, use this guide for detailed
information on the MIB.

XViii

NavisXtend Provisioning Server User’s Guide



About This Guide
How to Use This Guide

How to Use This Guide

The following table summarizes the information contained in this guide:

Read

To Learn About

Chapter 1

General aspects of the NavisXtend Provisioning Server and the
client and how they interact with other components on the
network. This chapter describes the interface, features, and
typical applications of the NavisXtend Provisioning Server
Application Toolkit.

Chapter 2

How to install and administer the various components of the
Provisioning Server system. This chapter also describes the
steps required to develop a provisioning application.

Chapter 3

How to use the CLI.

Chapter 4

How to use the SNMP MIB.

What's New in This Release?

The following table lists the new product featuresin this release:

New Features/Functions Description

Compatibility with NavisCore database, The Provisioning Server Release 4.1

version 04.01.01.00 interacts with the NavisCore version
04.01.01.00 database. Keep in mind that
the server does not support all the new
NavisCore 04.01.01.00 object types.

Support of the following new cards: The Provisioning Server Release 4.1 can

e 1-port channelized DS3-1-0 card
(on B-STDX)

¢ 6-port DS3 Frame card (on CBX)
* CP40, CP50

» SP30, SP 40

manage these cards.

Limited support of GX 550 switch The Provisioning Server Release 4.1

supports configuration of elements that
are part of GX 550 switches.

NavisXtend Provisioning Server User’'s Guide

XiX



About This Guide

What's New in This Release?

New Features/Functions

Description

Support of the following new objects:

¢ Card Threshold Crossing Alarm
« Circuit Defined Path

e PPort Threshold Crossing Alarm

¢ Private Network-to-Network (PNNI)
Node

*+ Reference Time Server
¢ SvcNetwork ID

¢ Trunk

VPCI Table

The Provisioning Server Release 4.1
supports these new objects and their
associated attributes.

SNMPv2c protocol

The Provisioning Server SNMP agent
supports the SNMPv2c protocol.

Improved reliability and accuracy of
circuit provisioning

Circuit provisioning on the B-STDX
8000/9000 and the CBX 500 is improve(
preventing circuits from being partially
provisioned and the database from

becoming out-of-sync with the switch.

Diagnostic trace information added

Diagnostic trace information has beg
added to the Provisioning Server to prir
MIB interface related interaction. This
information can assist in troubleshootin
problems.

Support of a VPI value of 0 or greater

The Provisioning Server supports a
value of O or greater when provisioning
an ATM OPT Cell Trunk LPort on the
CBX 500 switch.

Real time status of NavisCore objects

GetOperlnfo, an operational function,
retrieves the real time status of NavisCqg
objects at the PVC level. API, CLI, and
MIB interfaces are available.

Diagnostics

A set of operational functions performs
diagnostic services for troubleshooting at
the Circuit, Channel, PPort, and L Port
levels.

]

—

VPI

XX

NavisXtend Provisioning Server User’s Guide



About This Guide
What's New in This Guide?

What's New in This Guide?

The following table lists the enhancements to this guide:

Changes/Enhancementsto this Guide Described in

Chapter

Removed the containment hierarchy tables that listed the parent-child Previously in

relation used to build object I1Ds to name objects in the network. Appendix A

Thisinformation is now included in attribute matrixes in the NavisXtend

Provisioning Server Object Attribute Definitions.

Real time status and diagnostic operational function descriptions. 1

Real time status and diagnostic CL1 command descriptions 3

New object descriptions. 1

SNMPV2 support description. 4

Conventions

This guide uses the following conventions:

Convention

Couri er

Helvetica

Bold

Italics

Boxes around text

Indicates

Program source code.

User input on a separate line and
screen or system output.

Structure names or other source
code in body text.

Function name,

CLI command,

UNIX command, or
user input in body text.

Variable used by afunction or
command.

Book titles, new terms, and
emphasized text.

Notes, warnings, cautions.

Example

unsi gned | ong
Pl ease wait...

CvObjectld structure

CvCreateNetworkld
cvaddmember

select

Typecd install and ...

User Arg argument

NavisXtend Provisioning
Server User’s Guide

See exampl es bel ow.

NavisXtend Provisioning Server User’'s Guide

XXi



About This Guide
Related Documents

> Notes provide additional information or helpful suggestions that may apply to
the subject text.

ﬁ Cautions notify the reader to proceed carefully to avoid possible equipmerlt
damage or data loss.

ﬁ Warnings notify the reader to proceed carefully to avoid possible personal
injury.

Related Documents

This section lists the related Ascend documentation that you may find helpful to read.
*  Network Management Station Installation Guide (Product code: #80014)

» NavisCore Frame Relay Configuration Guide (Product code: #80071)

» NavisCore ATM Configuration Guide (Product code: #80072)

* NavisCore SMDS Configuration Guide (Product code: #80073)

Customer Comments

Customer comments are welcome. Please respond in one of the following ways:

e Fill out the Customer Comment Form located at the back of this guide and return
it to us.

e E-mail your comments to cspubs@ascend.com

« FAX your comments to 978-692-1510, attention Technical Publications.

XXii NavisXtend Provisioning Server User’s Guide



About This Guide
Customer Support

Customer Support

To obtain release notes, technical tips, or support, access the Ascend FTP Server or
contact the Technical Assistance Center at:

e 1-800-DIAL-WAN or 1-978-952-7299 (U.S. and Canada)
* 0-800-96-2229 (U.K.)

o 1-978-952-7299 (all other areas)

Terminology

The NavisXtend Provisioning Server is referred to in text using any of the following
terms:

« NavisXtend Provisioning Server
« Provisioning Server
* server

TheNavisXtend Provisioning Server Application Toolkit is referred to in text using
any of the following terms:

* NavisXtend Provisioning Server Application Toolkit
» Application Toolkit
* toolkit

TheNavisXtend Provisioning client is referred to in text using any of the following
terms:

» NavisXtend Provisioning client
* Provisioning client

* client

» application

The product name for CascadeView has changéthwisCore™.

NavisXtend Provisioning Server User’'s Guide XXiii



Overview

This chapter describes what you need to know before developing an NavisXtend
Provisioning client or aprovisioning script. It describes the features of the Application
Programming Interface (API) and presents some basic procedures that show how to
perform tasks with the API.

NavisXtend Provisioning Server

The Ascend NavisXtend Provisioning Server is based on a client-server network
management architecture;

NavisXtend Provisioning Client — The client is an application responsible for
generating requests to provision Ascend network components. Much of the
provisioning functionality of NavisCore is available: the client can query and
configure Frame Relay, ATM, ATM Network Interworking, and SMDS objects
including switch nodes, cards, physical ports, logical ports, circuits, and so on.

NavisXtend Provisioning Server — The server is a UNIX process that responds to
requests from NavisXtend Provisioning clients and updates the Ascend switches and
the NavisCore database.

The NavisXtend Provisioning client runs on a workstation and interacts with an
NavisXtend Provisioning Server. The NavisXtend Provisioning Server responds to

client requests to manage Ascend switches and updates the NavisCore database.
While there can be multiple instances of NavisCore, the NavisXtend Provisioning

client, and the NavisXtend Provisioning Server running on the network, any client
typically interacts with only one Provisioning Server at a time. Each Provisioning

Server can manage all the Ascend switches and update the shared NavisCore database.

NavisXtend Provisioning Server User's Guide 1-1



Overview
NavisXtend Provisioning Server

Because the Provisioning Server shares the same Sybase database with other
NavisCore processes, the server should reside in the same TCP/IP subnetwork as
NavisCore and the Sybase database. As the Provisioning Server makes changesto the
Ascend network, it maintains consistency with NavisCore. The Provisioning Server
uses alocking mechanism so that NavisXtend Provisioning clients and other
NavisCore processes that share the same database cannot update the same object at the
same time.

Figure 1-1 shows the relationship among the NavisXtend Provisioning client, the
NavisXtend Provisioning Server, and other components on the network.

User-supplied NavisXtend Provisioning Clients

TCP/IP

NavisCore

NavisXtend Provisioning Server

TCP/IP | NavisCore
Database

TCP/IP

Ascend Switch Ascend Switch Ascend Switch

Figure1l-1. Componentsin the NavisXtend Provisioning Server System

1-2 NavisXtend Provisioning Server User’s Guide



Overview
Application Toolkit

The NavisXtend Provisioning Server product includes the following software:

NavisXtend Provisioning Server — Installed and maintained on a UNIX
workstation on a TCP/IP network.

NavisXtend Provisioning Server Application Toolkit — Installed and used by the
application developer to create an NavisXtend Provisioning client or script that
submits requests to the Provisioning Server.

The next section describes the NavisXtend Provisioning Server Application Toolkit.

Application Toolkit

The Application Toolkit provides the following components:

APl — Used by an application developer to write a new Provisioning client or to
integrate a client into an existing provisioning system.

For the convenience of the programmer, the API functions are available in various
versions. For example, the Application Toolkit provides both a C and C++ interface
for each API function. And, the toolkit provides both a synchronous and asynchronous
version of each function that performs provisioning operations.

For details on how to use the API to develop a Provisioning clienClsaeter 2n
this guide and to thHavisXtend Provisioning Server Programmer’s Reference

Command Linelnterface (CLI1) — Used to build a provisioning script. The CLI is a
set of command-line programs that hide the code details of the API. Users can issue
these commands from any UNIX shell to provision network objects in either
interactive or batch mode.

For details on how to use the CLI to develop a provisioning scripClsaegter 3

Enterprise-specific MIB — Used to access switches in the network via SNMP
commands. The MIB supports all the attributes and functionality of the APl and
provides access via SNMJet, set, andget-next operations.

For details on how to use the MIB to develop a provisioning scripCsepter 4n
this guide and to thMavisXtend Provisioning Server Enterprise MIB Definitions.

NavisXtend Provisioning Server User's Guide 1-3



Overview
Application Toolkit

Figure 1-2 illustrates how the Application Toolkit is organi zed.

Application
Toolkit
Synchronous Asynchronous Synchronous Asynchronous
function function function function

Figure1l-2. Application Toolkit Organization

Synchronous and Asynchronous Functions

The Application Toolkit provides two communication methods for each API function
that performs provisioning operations. You can issue either:

» A synchronous function and wait for a response to your request. The application
waits for the request to complete before continuing with other processing. This is
also known as hlocking request, because each function blocks to completion.

« An asynchronous function and perform other operations while your request is
being processed.

Figure 1-3shows the flow between the application and the Provisioning Server for a
synchronous request. The application does not regain control of the program until the
response returns from the server.

1-4 NavisXtend Provisioning Server User’s Guide



Overview
Application Toolkit

Client Code Server Code
4 | ™ Ve ~
' | CvsGetObject (...) 9
| gy
| T
|o \ receives request
[
i ° | |
' sends*esponse
N * ) o J

Program control
flow

_._._>

Request-response
message flow

—>

Figure1-3. Flow Between Client and Server for a Synchronous Function

With an asynchronous function, the application continues with other work while
waiting for the response. The application supplies a callback handler to the API. The
function invokes this callback handler function to deliver the response from the server.

NavisXtend Provisioning Server User's Guide 1-5



Overview
Application Toolkit

Figure 1-4 shows the flow between the application and the Provisioning Server for an

asynchronous request.
Client Code Server Code
e N . N
4 select ()
' CvProcessEvents ()
/ ? \
, vO

| / .

, o API Library 9

: , s receives request

| | \ O |

' , responseHandler () N /)

| {

o

, sends response
| }
/
| ' \ J
) ® .
' Program control
/ — e — .
9 flow
CvaGetObiject (...)
) Request-response

return message flow

N J

Figure1l-4. Flow Between Client and Server for an Asynchronous Function

During an asynchronous request, the following steps occur:

Step 1 The application code issues an asynchronous function.
Step 2 The application sends the request to the Provisioning Server.
Step 3 The application immediately returns to the select loop. If the application calls

select directly, it needs to know what file descriptor is being used for
communication with the server. The application can issue CvGetSelectl nfo to
obtain the information needed to pass to select.

Step 4 The Provisioning Server processes the request.

Step 5 The Provisioning Server sends the response to select.

1-6 NavisXtend Provisioning Server User’s Guide



Overview
Application Toolkit

Step 6 When select notifies the application of pending messages from the server, the
application issues CvProcessEvents, which goesinto the API library to receive
and process the response.

Step 7 In turn, the API passes the response to the client response handler.

Step 8 The client code continues.

Synchronous functions involve less coding but may be less efficient, because the
process waits while they are processed.

Asynchronous functions allow your application to continue processing rather than
wait for completion. However, asynchronous functions require additional coding. The
application programmer must provide the callback handler and must make sure that
the application invokes the API appropriately when the response returns from the
server. Specifically, the application must be built around the UNIX select system call
and must ensure that all processing is done in between calls to select.

Functions That Take an Argument List

Most of the C functions that perform provisioning operations on network components
take one or more attributes. The attributes are specified in an argument list. The
Application Toolkit provides two options for specifying an argument list. Before you
issue a function that takes an argument list, you can either:

» Issue a single functiorCyArgsM akeVals or CvArgsM akel ds) that takes a
variable number of arguments and builds the required data structure.

» Issue a series of utility functions that crea@@ArgsM ake) and fill in
(CvArgsSetAttrType) the required data structure.

In C++, multiple constructors for the argument objéxtClient::Args) handle
variable argument lists.

Function Names

The name of each function varies, depending on the version of the furietiooe.1-1
shows the different names for the same function that adds an object to the database.

Table1-1. Naming Conventionsfor Toolkit Functions

Version Function Name
Asynchronous C function CvaAddObject
Synchronous C function CvsAddObject

NavisXtend Provisioning Server User's Guide 1-7



Overview
Toolkit Functionality

Table1-1. Naming Conventionsfor Toolkit Functions

Version Function Name

C++ function CvClient::addObject

CLI command cvadd

Toolkit Functionality

Thetoolkit functions are divided into the following groups:
e Session Control functions open and close sockets and control session settings.
e Operational functions perform provisioning operations on network components.

e Select Loop Processing functions support loop processing of Helect system
call.

« Utility functions build gument lists, handle initialization, and manage storage.

The following sections describe the toolkit functions by group.

Session Control Functions

Session control functions open and close sockets and control session settings.

.

> The CLI uses environment variables to specify session control settings (fg
details, seéSetting EnvironmenYariables” on pag2-11).

The session control functions are:
Connect, open — Establishes a session with the Provisioning Serve
Close — Terminates a session with the Provisioning Serve

SetM odify Type — Specifies whether updates are made to the network component
and the database, or to the databasg onl

SetNumRetries — Sets the number of retries to check card status preceding circuit
provisioning requests.

Operational Functions

Operational functions perform provisioning operations on network components. Most
operational functions of the API have a CLI command counterpart.

1-8 NavisXtend Provisioning Server User’s Guide



Overview
Toolkit Functionality

The operational functions and CLI commands are:

AddObject (Object ID, Attributes) — Creates an object in the database and
(optionally) in the switch.

AddMember (Object ID, Object ID) — Adds a member to an object list.

DeleteObject (Object ID) — Deletes an object from the database and (optionally)
from the switch.

DeleteM ember (Object 1D, Object D) — Deletes a member from an object list.

GetDiagObject (Object 1D, Attributes) — Retrieves object diagnostic results in the
network.

GetErrorMsg — Returns an error message.

GetList (Object ID, ObjectList, Attributes) — Retrieves the values of specific
object attributes that are specified as an ObjectList.

GetObject (Object 1D, Attributes) — Retrieves the values of specific attributes of
an object.

GetOperInfoObject (Object 1D, Attributes) — Retrieves the values of specific
Operlinfo attributes from the switch.

GetResponseArgs — Returns the argument list returned by a synchronous function.

ListAllContainedObjects (Object D) — Queries the database for a list of objects of
any type that are contained by a specified parent.

ListContainedObjects (Object ID, type, Attributes) — Queries the database for a
list of objects of the given type that are contained by a specified parent.

M odifyObject (Object I D, Attributes) — Modifies specific attributes of an object in
the database and (optionally) in the switch.

ModifyList (Object ID, ObjectList, Attributes) — Modifies specific object
attributes that are specified as an ObjectList in the database and (optionally) in the
switch.

StartDiagObject (Object 1D, Attributes) — Starts diagnostics on an object in the
network.

StopDiagObject (Object 1D, Attributes) — Stops diagnostics on an object in the
network.

UpdateDiagObject (Object ID, Attributes) — Modifies diagnostics on an object in
the network.

The following operational functions are used by the API only:

NavisXtend Provisioning Server User's Guide 1-9



Overview
Toolkit Functionality

Select Loop

NextObject — Retrieves the next object in a list of objects.

The operational functions are supported for most target object types, with a few
restrictions. For example, you cannot specify a switch when you issue an Add or
Delete command, because the Provisioning Server does not support adding or deleting
switches.

Processing Functions

Select Loop Processing functions support loop processing afdieet system call.
The functions that suppastlect loop processing are:

Callback Handler — Is the prototype for a function supplied by the client. The APIs
call these callback handlers to deliver a response to an asynchronous request. CVCBH
is the CvArgs callback function, and OLCBH is the ObijectList callback function.

GetSelectl nfo — Obtains information needed to pass telact system call.

ProcessEvents — Processes activity on file descriptors to receive responses from an
asynchronous request.

Timeout — Determines if an outstanding asynchronous request timed out.

Utility Functions

Utility functions build argument lists, handle initialization, and manage storage. The
utility functions are:

ArgsMake — Creates an argument list.
ArgsMakeVals, ArgsM akel ds— Creates and adds arguments to an argument list.

ArgsFree — Deletes a pointer to an argument list created either explicitly or
implicitly by another function.

ArgsSetAttrType — A series of functions that add or modify an argument in an
argument list.

ArgsGetAttrType — A series of functions that read values out of an argument list.
ArgsCount — Retrieves the number of arguments in an argument list.
ArgsldAt — Retrieves a specified argument ID in an argument list.

ArgsTypeAt, ArgsValueAt — Retrieves the type or value of a specified argument in
an argument list.

ArgsErrorlndex — Indicates if any argument in an argument list has an error status.

1-10

NavisXtend Provisioning Server User’s Guide



Overview
Toolkit Functionality

ArgsExist — Determines if a specified argument exists in an argument list.

ArgsGetStatus, ArgsStatusAt — Returns the error status code of a specified
argument in an argument list.

ArgsEqual — Compares two argument lists for equality.

ArgsCombine — Adds two argument lists, resulting in a new argument list that
combines both sets of arguments. When an argument exists in both lists, the value
from the second list is used.

ArgsRemove — Subtracts two argument lists, resulting in a new argument list that
contains the arguments from the first list that were not in the second list.

ArgsSelect — Returns the intersection of two argument lists, resulting in a new
argument list that contains the arguments that existed in both lists. Each argument uses
the value from the first list.

ArgsToString — Converts an argument list to a printable string format.

StringFree — Deletes a pointer to a string returneddrgsToString and
ObjectldToString.

AddArgumentByName — Adds an argument to an argument list by specifying a
textual argument name.

AddArgumentByNameValue — Adds an argument to an argument list by specifying
a textual argument name and value.

ArgsPrint — Prints the text description of an argument list to a file.

CreateChanPerformanceMonitorld — Creates a CVT_ChanPerformanceMonitor
object

CreateObjectTypel d, setObjectType — A series of functions that create an object
identifier of a specified type.

CreateNetwor kldFromsString, CreateSwitchldFromString — Creates an object
identifier of a specified type, based on a text description.

ObjectldToString — Converts an object identifier to text descriptions.

GetObjectTypeValue, getObjectType — A series of functions that read a specified
value out of an object identifier.

GetNumRetries — Returns the number of retries to check card status preceding
circuit provisioning requests.

ObjectldToPrint — Prints the text description of an object identifier to a file.

ObjectListAdd — Adds a CvObjectld/CvArgs to an ObjectList.

NavisXtend Provisioning Server User's Guide 1-11



Overview
Managed Objects

ObjectListCombine — Returns the union of two ObjectLists.
ObjectListCount — Retrieves the number of objects in the ObjectList.

ObjectListErrorindex — Determines if any object in an ObjectList has an error
status.

ObjectListFree — Deletes a pointer to an ObjectList.

ObjectListGetStatus — Retrieves the error status code of an object in an ObjectList.
ObjectListldAt — Retrieves the objectld at a specified position in the ObjectList.
ObjectListMake — Creates an ObjectList.

ObjectListPrint — Prints the contents of CvObjectList to a file.
GetArgumentName — Converts an argument ID to a printable string format.
GetEnumName — Converts an enumerated value to a printable string format.
GetObjectTypeName — Converts an object type to a printable string format.
ParseObjectld — Converts text descriptions of an object to an object identifier.

Par seObjectType — Converts a text description to an object type.

Managed Objects

Managed objects are network components managed on the network. Each managed
object is represented by ibbject identifier (object ID), which is expressed as a
concatenated, ordered list of type-value identifiers, each separated by periods. To
specify an object ID, you first specify the object’s parent (if any), including the parent
type and value. Then, you specify the child type and value.

For example, an object ID for a PPort would be expressed as:
switch.100.101.102.103.card.6.pport.4

The object is identified by identifying its parent in the containment hierarchy
(switch.100.101.102.103.card.6.), and then identifying the object relative to that parent

(pport.4).

Note that the numbering of an objechd a globally unique ID; rather, it is relative to
the parent object. Thus, this PPort is expressed as the fourth PPort of the card:

... pport.4
When you specify a switch parent, you can identify it in either of the following ways:

* IP address, using switch as the type and the switch’s IP address as the value:

1-12

NavisXtend Provisioning Server User’s Guide



Overview
Object Types

switch.100.101.102.103.card.6.pport.4

« String name, using swName as the type and the switch’s name as the value:
swName.abcdefg.card.6.pport.4

If the switch string name contains one of the following special characters: ~*!{} ()
$ & ;\ | " or blank character, you must enclose at least the special character with /"
characters:

swName.my/” ["switch.card.6.pport.4

If the switch string name contains a period, you must enclose the entire string with /”
characters:

swName./"my.switch/”.card.6.pport.4
You do not need to enclose the following special characters. +=-_ @ #"%,:[ ]/~

Keep in mind that if a switch name is not unigue among networks, a command issued
using the switch string name is executed on the first switch found with that name. To
ensure that the command is executed on a particular switch, identify the object using

the switch’s IP address.

In C, an object is represented as a data structure that is manipulated using utility
functions. In C++, an object is represented by a class that is manipulated using
member functions. For the CLI, an object is represented by string representation.

Object Types

Table 1-2list the object types supported by the Provisioning Server. These object
types are defined in the filevObjectType.H.

> The names of several objects differ from the names used in NavisCore.

Table1-2. Object Types Supported by the Provisioning Server

Object Name Enumerated Object Type (API) Object Type
(CLI)
Automatic Protection Switching | CVT_Aps Aps
Assigned SV C Security Screen CVT_AssignedSvcSecScn AssignedSvcSecScn
Card CVT_Card Card
Card Threshold Crossing Alarm | CVT_CardTca CardTca

NavisXtend Provisioning Server User's Guide 1-13



Overview
Object Types

Table1-2. Object Types Supported by the Provisioning Server (Continued)

Object Name Enumerated Object Type (API) Object Type
(CLI)

Channel CVT_Channdl Channel
Channel Performance Monitor CVT_ChanPerformanceMonitor PM
Circuit CVT_Circuit Circuit
Customer CVT_Customer Customer
Circuit Defined Path CVT_DefinedPath DefinedPath
Logical Port CVT_LPort L port
Network Connection Admission | CVT_NetCac NetCac
Control
Network CVT_Network Network
Performance Monitor CVT_PerformanceMonitor PM
Pnni Node CVT_PnniNode PnniNode
Extended Super Frame Data CVT_PHdl Fdl
Link
PMP Circuit Leaf Endpoint CVT_PMPCkt PM PCKtL eaf
PMP Circuit Root Endpoint CVT_PMPCktRoot PMPCktRoot
PMP SPVC Leaf Endpoint CVT_PMPSpvcL eaf PM PSpvcL eaf
PMP SPVC Root Endpoint CVT_PMPSpvcRoot PM PSpvcRoot
Physical Port CVT_PPort Pport
Physical Port Threshold CVT_PPortTca PportTca
Crossing Alarm
Reference Time Server CVT_RefTimeServer Ref TimeServer
Service Name CVT_ServiceName ServiceName
SMDS Address Prefix CVT_SmdsAddressPrefix AddressPrefix

SMDS Alien Group Address

CVT_SmdsAlienGroupAddress

AlienGroupAddress

SMDS Alien Individual Address

CVT_SmdsAlienindividual Address

Alienindividual Address

SMDS Country Code CVT_SmdsCountryCode CountryCode
SMDS Group Screen CVT_SmdsGroupScreen GroupScreen
1-14 NavisXtend Provisioning Server User’s Guide




Overview
Object Types

Table1-2. Object Types Supported by the Provisioning Server (Continued)

Object Name

Enumerated Object Type (API)

Object Type
(CLI)

SMDS Individual Screen

CVT_SmdslIndividual Screen

Individual Screen

SMDS Loca Individual Address

CVT_SmdsLocalIndividual Address

Local Individual Address

SMDS Netwide Group Address | CVT_SmdsNetwideGroupAddress NetwideGroupAddress
SMDS Switch Group Address CVT_SmdsSwitchGroupAddress SwitchGroupAddress
Soft PV C Circuit CVT _Spvc Spvc

SVC Address CVT_SvcAddress SvcAddress

SVC Config CVT_SvcConfig SvcConfig

SVC Close User Group CVT_SvcCUG SvecCUG

SVC Close User Group Member | CVT_SvcCUGMbr SvcCUGMbr

SVC Close User Group Member | CVT_SvcCUGMbrRule SvcCUGMbrRule
Rule

SVC Networkld CVT_SvcNetworkld SvcNetworkld

SVC Node Prefix CVT_SvcNodePrefix SvcNodePrefix

SVC Prefix CVT_SvcPrefix SvcPrefix

SV C Security Screen CVT_SvcSecSen SvcSecSen

SV C Security Screen Action CVT_SvcSecScnActParam SvcSecScnActParam
Parameter

SVC User Part CVT_SvcUserPart SvcUserPart

Switch CVT_Switch Switch

Traffic Descriptor CVT_TrafficDesc TrafficDesc

Traffic Shaper CVT_TrafficShaper TS

Trunk CVT_Trunk Trunk

VPCI Table CVT_VPCITable VpciTable

Virtual Private Network CVT_VPN Vpn

NavisXtend Provisioning Server User's Guide

1-15



Overview
Containment Hierarchy

Containment Hierarchy

Figure 1-5 shows the containment hierarchy (the parent-child relation) for building
object IDs to name objectsin the network.

Keep in mind that network 1D is required only when you name an object directly
below network in the containment hierarchy. You can omit the network 1D for switch
and objects lower in the hierarchy.

)
~~
VP
VPN / Traffic
Descriptor
S
SvcSecScn NetCac
—
T omame )
Service Name SMDS
Country Code
e TR
SvcCUGMbrRule [ SvcCUG j SMDS Netwide
- Group Address
-~
SvcCUGMbr
Reference .
. Switch
Time Server

SVC Node SMDS Alien
Prefix Individual

Address

SMDS Alien SMDS Address || SMDS Switch
Group Address Prefix Group Address

e

Card Threshold

Crossing Alarm

| Figure continues onto next page

1-16 NavisXtend Provisioning Server User’s Guide



Overview

Containment Hierarchy

Figure continued from previous page

SR
PFd

—__
Performance
Monitor

PMP Circuit

Leaf Endpt

PMP Spvc
Root Endpt

PMP Spvc
Leaf Endpt

DefinedPath

>[ PPort

— - J

SR
PMP Circuit Channel
Root Endpt

: < -

LPort

NI

/—/
N
/ . N
Circuit
Endpoint
SR
VPCITable
-~
Soft PVC
Circuit

PPort Threshold
Crossing Alarm

Traffic Shaper

-

e
SMDS Local

Individual
Address

T anime )
SMDS

Individual

Screen

A
SMDS Group

Screen

SvcSecScn
ActionParam )

Assigned
SvcSecScn

{Schetworkld

[SchserPartj [SVC Addressj [ SVC Prefix j [ SVC Config J

Figure1-5. Containment Hierarchy for Managed Objects

NavisXtend Provisioning Server User's Guide

1-17



Overview
Naming Conventions for Objects

Naming Conventions for Objects

Table 1-3 lists the rules for naming object type-value identifiers.

Table1-3. Naming Conventionsfor Object 1D

Object Type How I dentified
Aps The object is unique to its parent and requires no identifying
CardTca value. Identify the object by the type name and the parent.
DefinedPath

For example, an SMDS individual screen is expressed as.

NetCac switch.100.101.102.103.card.6.pport.4.Iport.2.individual screen

PerformanceM onitor
ChanPerformanceM onitor

PFdI

PPortTca

SMDS group screen

SMDS individual screen

SvcConfig

SvcSecScnActParam

AssignedSvcSecScn By astring name.

Cus;omer For PnniNode, the object isidentified by a string consisting of a
PrniNode Peer Group Level and a Peer Group ID, separated by adash ( -).
SveCUG The Peer Group Level value is adecima number representing the
SveCUGMbr number of bits allowed in the Peer Group ID field (range O - 104).
SvcCUGMbrRule The Peer Group ID value is a hexidecimal number (range 0-104
S\ICS.eCSCH bits); the number depends upon the Peer Group Level. For
SerwlceName example, a PnniNode is expressed as:

Eﬁ"‘r‘;'(CD& switch.100.101.102.103.pnninode.45-01234567890abcdef. . .

VPN where 45 isthe number of bits allowed and 01234567890abcdef is
the Peer Group ID. The number of bits specified in the Peer
Group ID can be less than Peer Group Level, but not more.

For SvcCUGMbr, the object isidentified by two names: the CUG
name and the member name.

1-18 NavisXtend Provisioning Server User’s Guide



Overview
Naming Conventions for Objects

Table1-3. Naming Conventionsfor Object 1D (Continued)

Object Type

How | dentified

Card

L Port
PMPSpvcL esf
PPort
TrafficShaper

By relative number. For example, the fourth PPort on acard is
identified as: switch.100.101.102.103.card.6.pport.4

For PMPSpvcL eaf objects, specify the Root parent. The first
PMPSpvcLedf isidentified as:

switch.100.101.102.103.card.6.pport.4.lport.1.PMPSovcRoot.vpi.

5[ .vci.43] .PMPspvcleaf.1

Use the relative numbering scheme to identify LPorts; do not use
the LPort Interface Number displayed in the NavisCore screens.

ATM Transport for FR NNI LPorts are identified with VPI and
VCI numbers.

ATM Virtual UNI LPorts are identified with the VPI start value.

MLFRBundlel Ports are created on the card, not a specific PPort.
Thus, they areidentified as:
switch.100.101.102.103.card.6.Iport.1

MLFRMemberL Ports are created on the PPort. Thus, they are
identified as: switch.100.101.102.103.card.6.pport.4.lport.1

Channel

By anumber in the range of 1 - 28. The channel object applies
only to channelized cards. For example, a Frame Relay circuit on
achannelized DS3 card isidentified as:
switch.100.101.102.103.card.6.pport.4.channel .25.Iport.1.dlci.55

Circuit

By the number(s) of itsfirst endpoint. An endpoint can be an
L Port or a Service Name; the object ID representation differs
accordingly.

In the case of L Ports, either endpoint can be a Frame Relay or an
ATM endpoint. For Frame Relay endpoints, use the DLCI
number. For ATM endpoints, use both the VPI and VCI values.
For ATM Network Interworking for Frame Relay NNI endpoints,
include the VPI, VCI, and DLCI numbers. For example, a Frame
Relay endpoint is expressed as:
switch.100.101.102.103.card.6.pport.4.1port.2.dlci.55

An ATM endpoint is expressed as:
switch.100.101.102.103.card.6.pport.4.Iport.2.vpi.8.vci.65

In the case of ServiceName, the endpoint isidentified by the
network number, the name of the ServiceName binding, and the
VPI/VCI pair or DLCI number (depending on endpoint type).

For example, a ServiceName endpoint is represented as either:
network.154.188.0.0.ServiceName.xxx.vpi.14.vci.128
network.154.188.0.0.ServiceName.xxx.dlci.55

where xxx is the name of the ServiceName binding.

NavisXtend Provisioning Server User's Guide

1-19



Overview
Descriptions of Object Types

Table1-3. Naming Conventionsfor Object 1D (Continued)

Spvc

Object Type How I dentified

Network By an IP address with the last 2 bytes set to O (Class B addresses)
or thelast 1 byte set to 0 (Class C addresses). This object typeis
used to specify aroot when you issue acommand to list objects
contained by a specific parent.

PMPCkt By the VPI and VCI values of its endpoint.

PMPCktRoot P
A PMP R 3

PMPSpvcRoot SpvcRoot endpoint is expressed as

switch.100.101.102.103.card.6.pport.4.1port.2.PMPSpvcRoot.vpi.
8[ .vci.65]

SMDS address prefix

By an E.164 address string (3 to 6 characters).

SMDS country code

By an E.164 address string (up to 4 characters).

SMDS alien group address
SMDS alien individual address
SMDS local individual address

By an E.164 address string (10 to 16 characters).

SMDS netwide group address

SMDS switch group address

SvcAddress By astring that conforms to the convention used to specify

SvcNodePrefix addresses. For more information, see “SVC Addressing” on

SvcPrefix page 1-44

SvcNetworkld

SvcUserPart

RefTimeServer By an IP address of the parent switch and IP address of the
reference time server.
For example, a Reference Time Server is expressed as:
switch.100.101.102.103.Ref TimeServer.200.201.202.203

Switch By an IP address or by a string name.

VpciTable By a number in the range of 0 - 65535.

Descriptions of Object Types

The following sections describe the object types, including the kinds of management
operations that you can perform on an object and any operating restrictions. The
objects types are listed aphabeticaly.

See the NavisXtend Provisioning Server Software Release Notice for thisrelease
for information about the object types supported by Provisioning Server on the
GX 550 switch.

1-20 NavisXtend Provisioning Server User’s Guide



Overview
Descriptions of Object Types

CVT_Aps

Automatic Protection Switching (APS) protects SONET media from line outages.
Currently, APS support is provided for 1-port OC-12¢/STM-4 and 4-port
OC-3c/STM-1 cards on CBX 500™ switches. When the attribute
CVA_PPortRedundancy is set to Apsl+1, the protection port forms a pair with the
existing PPort on the card.

You can only modify APS objects; the Provisioning Server does not support adding or
deleting them. Depending on whether the PPort is the working PPort or the protection
line, you can configure alist of PPort and APS parameters. The attribute
CVA_ApsApsCommand is supported for the APS PPort pair for sending external
switch requests.

CVT_AssignedSvcSecScn

CVT_Card

AssignedSvcSecScn specifies the association between an LPort and an SV C security
screen. When you add or delete an object of thistype, you are actually adding or
removing screens from the parent L Port. This object exists only on ATM UNI/NNI

L Ports configured on a CBX 500 switch. A limit of 16 screens can be added to one
L Port.

The NavisCore database automatically populates each switch with cards of type
“empty”. To add a card, use the Modify command to change the card’s type from
“empty” to a specified type. Specify the appropriate card type using the attribute
CVA_CardDefinedType.

The attributes CVA_CardUioDefinedXface, CVA_CardDsx1DefinedXface, and
CVA_CardE1DefinedXface provide subtypes for the UIO, Dsx1, and E1 card types,
respectively. If you modify a card to one of these card types and do not specify the
appropriate subtype, the card defaults to uioXfaceTypeV35, dsx1XfaceTypeRj48, or
elXfaceTypeCoaxPair750hm, respectively.

To delete a card, use the Modify command to change the card’s type to “empty”.

If you modify a card to a type that does not match the actual card type, the
Provisioning Server doamt inform you about the type mismatch.

CVT_CardTca

The CardTca object controls card threshold crossing alarm configuration.

NavisXtend Provisioning Server User's Guide 1-21



Overview

Descriptions of Object Types

CVT_ChanPerformanceMonitor

This object supports the 1-port Channelized DS3-1-0 card. The object identifies the
DS1 channel PM Threshold object. It is similar to the existing
CVT_PerformanceMonitor object type, but contains a channel identifier.

There aretwo levels of PM Threshold configuration on the Channelized DS3-1-0
card. PM Threshold can be configured on the PPort level and on the channel level.

The DS3 PM Threshold object has the PPort as its parent. However, similar to the
LPort’s dual parent identities to accommodate channels, PM threshold objects will
have similar OID on this card.

The DS3 PM Threshold object is unique to its parent PPort, and requires no
identifying value.
e cvlistcontained switch.1.1.1.1.card.2.pport.3 pm
This command returns the attributes configurable for the DS3 PM Threshold
object on PPort 3.
e cvmodify switch.1.1.1.1.card.2.pport.3.pm -DS3 PM Threshold attributes.

This command modifies the configurable attributes of the DS3 PM Threshold
object on the PPort.

The DS1 PM Threshold object is unique to its parent channel, and requires no
identifying value.
» cvlistcontained switch.1.1.1.1.card.2.pport.3.channel.4 pm
This command returns the attributes configurable for the DS1 PM Threshold
object on channel 4.

e cvmodify switch.1.1.1.1.card.2.pport.3.channel.4.pm -DS1 PM Threshold
attributes.

This command modifies the DS1 PM threshold attributes on channel 4.

CVT_Channel

The channel object applies only to channelized cards. Requests that specify a channel
and are sent to an object other than the channelized card return an error.

A channel is identified by a number in the range of 1 - 28. For example, a Frame Relay
circuit on a channelized DS3 card is represented as:

switch.100.101.102.103.card.6.pport.4.channel.25.Iport.1.dlci.55

Once a channelized card has been configured, NavisCore automatically populates the
card with all necessary channels. You can only modify channels; the Provisioning
Server does not support adding or deleting channels.

1-22

NavisXtend Provisioning Server User’s Guide



Overview
Descriptions of Object Types

The CVT_Channel object supports the following diagnostic operations. startDiag,

getDiag, updateDiag, and stopDiag. These operations enable you to retrieve

diagnostic information such as |oopbackstatus and errorcount, and change diagnostic
parameters such as injecterror and clearcounter. See Chapter 2, “Object Attributes for
APS Through LPort,” ifNavisXtend Provisioning Server Object Attributes

Definitions for descriptions of the diagnostic attributes.

CVT_Circuit

A circuit is identified by its first endpoint. An endpoint can be an LPort or a Service
Name; the object ID representation differs accordingly.

In the case of LPorts, either endpoint can be a Frame Relay or an ATM endpoint:
e For Frame Relay endpoints, use the DLCI endpoint.
e For ATM endpoints, include both the VPI and VCI values.

e For ATM Network Interworking for Frame Relay NNI endpoints, include the
DLCI numbers.

e For ATM Virtual UNI endpoints, use the start VPI value.
Specify a circuit's second endpoint with the attribute CVA_CircuitEndpoint2.

For example, the Frame Relay endpoint that connects switch 100.101.102.103, card 6,
PPort 4, LPort 2, DLCI 55 with ATM endpoint 154.188.162.44, card 3, PPort 5, LPort
11, VPI 8, VCI 65 is represented as either:

switch.100.101.102.103.card.6.pport.4.Iport.2.dIci.55
switch.154.188.162.44.card.3.pport.5.Iport.11.vpi.8.vci.65

The Provisioning Server supports VPI values of 0-15 for ATM circuit endpoints.

If an endpoint of a circuit is defined on a channelized DS3 card, the circuit is
identified by the channel ID. For example, the Frame Relay endpoint that connects
switch 100.101.102.103, card 6, PPort 4, channel 25, LPort 1, DLCI 55 with ATM
endpoint 128.129.130.131, card 1, PPort 2, LPort 3, VPI 14, VCI 128 is represented as
either:

switch.100.101.102.103.card.6.pport.4.channel.25.Iport.1.dIci.55
switch.128.129.130.131.card.1.pport.2.Iport.3.vpi.14.vci.128

When you add a circuit of type VPC, you do not provide the VCI part of the endpoint.
For example, the endpoint for a VPC circuit is represented as:

switch.100.101.102.103.card.6.pport.4.channel.25.Iport.1.vpi.14

In this case, the second endpoint must also be an ATM Cell endpoint on a CBX or GX
switch, as VPC circuits only support ATM endpoints.

NavisXtend Provisioning Server User's Guide 1-23



Overview

Descriptions of Object Types

In the case of ServiceName, the endpoint isidentified by the network number, the
name of the ServiceName binding, and the VPI/V CI pair or DLCI number (depending
on endpoint type). Specify the second endpoint with the attribute
CVA_CircuitEndpoint2.

For example, a ServiceName endpoint is represented as either:
network.154.188.0.0.ServiceName.xxx.vpi.14.vci.128
network.154.188.0.0.ServiceName.xxx.dIci.55

where xxx is the name of the ServiceName binding.

For details on how the Provisioning Server ensures reliability and accuracy of circuit
provisioning, see “Circuit Provisioning” on page 1-41

The CVT_Circuit object supports the following diagnostic operations: startDiag,
getDiag, updateDiag, and stopDiag. These operations enable you to retrieve
diagnostic information such as loopbackstatus and errorcount, and change diagnostic
parameters such as injecterror and clearcounter. See Chapter 2, “Object Attributes for
APS Through LPort,” ifNavisXtend Provisioning Server Object Attributes

Definitions for descriptions of the diagnostic attributes.

CVT_Customer

Customer objects are associated with VPN objects (Virtual Private Networks). Each
customer object contains information that identifies both the customer and the VPN
with which the customer is associated. The attribute CVA_CustomerVpnName
associates the Customer object with a particular VPN.

The attribute CVA_LPortCustomerName specifies a customer name to which the
LPort belongs.

CVT_DefinedPath

The DefinedPath object allows you to specify an exact path to be used when
forwarding traffic over a circuit. The DefinedPath consists of a sequence of hops to be
used to connect two circuit endpoints. DefinedPath hops are specified as either trunks
or nodes. In the case of nodes, any trunk connecting the nodes can be used.

For example, consider a network consisting of four nodes and six trunks. A PVC is
already defined (without a corresponding DefinedPath) between Switch.152.150.0.1
and Switch.152.150.0.4. Switch.152.150.0.4 is reachable from Switch.152.150.0.1 in
three hops.

1-24

NavisXtend Provisioning Server User’s Guide



Overview
Descriptions of Object Types

CVT LPort

By convention, defined paths are specified from the node with the larger | P address to
the node with the smaller IP address. The first hop of the path attribute specified that
Trunk.T6 should be used to reach the first hop node from Switch.152.150.0.4. The
second hop attribute specifies that switch.152.150.0.2 is the second hop and that any
trunk connection between switch.152.150.0.2 and switch.152.150.0.3 can be used to
reach it.

Thethird hop attribute is the same as the first. Trunk.T1 should be used from
switch.152.150.0.2 to reach the switch.152.150.0.1 and compl ete the defined path of
the circuit.

To specify this path through the CLI, set the pathlist attribute as follows:
switch.1.1.1. 1. card. 4. pport.5.Iport.1.dlci.1l6
-pat hli st net wor k. 152. 150. 0. 0. t runk. T6

swi tch/ 152. 150. 0. 2
net wor k. 152. 150. 0. 0. trunk. T1 -endli st

L Ports have different subtypes: Frame Relay, SMDS, ATM, and Other. When you
issue a command, specify only those attributes that are appropriate for the particular
LPort’s subtype. See thdavisXtend Provisioning Server Object Attribute Definitions
for the attributes that pertain to each object type and subtype.

For SMDS objects, you can set the CVA_LPortSsiLPort attribute to the object ID of
an SMDS SSI DTE LPort. Or, to de-multiplex the LPort, you set the attribute to an
object ID of type CVT_Null (use -nullObject in the CLI).

On a channelized DS3 card, an LPort is a child of a channel. Thus, when you issue an
Add command, you must specify the channel parent.

For ATM Virtual UNI LPorts on the CBX 500 switch, first create a feeder LPort with
ATM UNI type. Since the LPort number of a virtual UNI LPort is generated
automatically from the combination of its VPI start number and the Interface Number
(which is also generated automatically), you can use the VPI start number to identify
the LPort. For example, a Virtual UNI LPort with the start VPl number setto 1 is
represented as:

switch.128.129.130.131.card.1.pport.2.startvpi.1

ATM Network Interworking for Frame Relay NNI LPorts require a different object
identifier. This LPort type is identified by VPI/VCI pair.

For example, an ATM Network Interworking for Frame Relay NNI LPort with VPI 1
and VCI 32 is represented as:

switch.100.101.102.103.card.6.pport.4.vpi.1.vci.32

NavisXtend Provisioning Server User's Guide 1-25



Overview
Descriptions of Object Types

MLFRBundle LPorts are identified by card, not by PPort. MLFRMember L Ports are
identified by parent PPort. The MLFRMember L Ports are bound to a particul ar
MLFRBundle LPort on the same card, which can be used as an endpoint for trunk
creation. The bandwidth of the MLFRBundle L Port is the aggregate of its
MLFRMember LPorts. A maximum of 16 MLFRMembers can be bound to a
MLFRBundle LPort.

The CVT_L Port object supports the following diagnostic operations: startDiag,

getDiag, updateDiag, and stopDiag. These operations enable you to retrieve

diagnostic information such as loopbackstatus and errorcount, and change diagnostic
parameters such as injecterror and clearcounter. See Chapter 2, “Object Attributes for
APS Through LPort,” ifNavisXtend Provisioning Server Object Attributes

Definitions for descriptions of the diagnostic attributes.

CVT_MLFRBinding

The MultiLink Frame-Relay (MLFR) Binding object is an internal object that the
Provisioning Server uses to associate the MLFRBundle and MLFRMember LPorts. It
is not possible to create, modify, or delete this object through any user interface. The
MLFRBundle and MLFRMember LPorts are objects of type CVT_LPort. CLI
commandsvaddmember andcvdeletemember bind and unbind an MLFRMember
LPort to an MLFRBundle LPort. See the descriptionci@mddmember and
cvdeletemember in Chapter 3, “Using the CLI.” Also, for more information about
MLFRBundle and MLFRMember LPorts, see the description of the CVT_LPort
object in this section.

CVT _NetCac

Network Connection Admission Control (NetCAC) allows you to compute the
bandwidth allocation for any virtual circuit. The NetCac object exists under the
Network object. This object is supported only for CBX 500 and B-ST2000
switches. If the attribute CVA_NetCacCacType is set to Cascade, then only Cell Loss
Ratio and Cell Delay Variation parameters are configurable. For Customized CAC
configuration, you must supply Port Scale Factors and SCR Limit Scale Factors.

In the case of Customized CAC, you must supply the three SCR Limit Scale Factors
of Upper Limit, Scale Factor, and Maximum MBS values together. You can supply a
maximum of 10 sets. No default values apply and no upper boundary checks are
performed for any of these scale factor values.

CVT_Network

Use this object type to specify aroot when you issue a command to list objects
contained by a specific parent.

1-26 NavisXtend Provisioning Server User’s Guide



Overview
Descriptions of Object Types

CVT_PerformanceMonitor

This object supportsthe CURRENT (15-minute) and the ONE-DAY threshold
parameters for the following cards:

e 8-port TI/EL

e 8-port DS3/E3

e 1-port OC12

e 4-port OC3 cards

e 4-port 24-channel Fractional T1
e 1-port Atm lwu Oc3

e 1-port Atm CsDs3

e 1l-port 28-channel Ds3

Default values are set at the time of card configuration, which you can then modify.

CVT_PFdl

Once a card has been configured, NavisCore automatically populates the card with all
necessary Physical Ports. In the case of the ATM-T1 card on the CBX 500 switch, the
NavisCore database automatically populates the Extended Super Frame object.

You can only modify the Extended Super Frame object; the Provisioning Server does
not support adding or deleting it.

CVT_PMPCkt

A Point-to-MultiPoint (PMP) circuit consists of one endpoint acting as the Root and
the other endpoints acting as Leaves. Use this object to add PMP Leaves. A PMP Leaf
can be added, modified, and deleted. This object type applies only to CBX 500 and
GX switches. Since only ATM endpoints are supported, only VPI and VCI values are
supported. To add a leaf using the CLI or the API, you must specify the Root object as
one of the attributes. To add a leaf using the MIB, you specify the Root as an index.

NavisXtend Provisioning Server User's Guide 1-27



Overview
Descriptions of Object Types

CVT_PMPCktRoot

A Point-to-MultiPoint (PMP) circuit consists of one endpoint acting as the Root and
the other endpoints acting as Leaves. PMP Root can be added or deleted. This object
type applies only to CBX 500 and GX switches. Since only ATM endpoints are
supported, only VPI and VCI vaues are supported. To add a PMP Circuit using the
CLI or the API, add the Root and the L eaves separately. Root attributes are
Create-Only attributes.

CVT_PMPSpvcLeaf

Use this object type to add the Point-to-MultiPoint (PMP) SPVC Leaf.

For PMPSpvcL eaf objects, specify the Root parent as part of the object ID
representation. For example:

switch.100.101.102.103.card.6.pport.4.Iport.1.PMPSpvcRoot.vpi.5[.vci.43].PMPspvcleaf.1

> The Root parent specification does not include the vci value if the Root isa
permanent virtual circuit (PVC) Spvc.

For the CL1 or the API, you no longer need to specify the Root object as one of the
attributes.

To add aleaf using the MIB, you specify the Root as an index.

You must specify the correct instance number when you perform an add, get, modify,
or delete operation. To retrieve the correct instance number from the database, use the
attribute CVA_PMPSpvcRootNextAvailablel eaf No.

CVT_PMPSpvcRoot

This object typeissimilar to CVT_Spvc, but is used to add a Point-to-Multi Point
(PMP) SPVC root. This object type applies only to CBX 500 and GX switches. You
can add, modify, and delete this object type.

When you add the Root, the first leaf is automatically added. To modify the first leaf,
use the abject type CVT_PMPSpvcL eaf.

CVT_PnniNode

The PnniNode object isan ATM routing and signalling protocol designed for
dynamically routing scalable, QoS-enabled, bandwidth adaptive, ATM switched
virtual circuits (SVCs). The PnniNode object specifies which Peer Group ID that the
node uses when communicating with the PNNI neighbor nodes.

1-28 NavisXtend Provisioning Server User’s Guide



Overview
Descriptions of Object Types

CVT _PPort

Once acard has been configured, NavisCore automatically popul ates the card with all
necessary Physical Ports. You can only modify PPorts; the Provisioning Server does
not support adding or deleting PPorts.

The CVT_PPort object supports the following diagnostic operations. startDiag,

getDiag, updateDiag, and stopDiag. These operations enable you to retrieve

diagnostic information such as loopbackstatus and errorcount, and change diagnostic
parameters such as injecterror and clearcounter. See Chapter 2, “Object Attributes for
APS Through LPort,” ifNavisXtend Provisioning Server Object Attributes

Definitions for descriptions of the diagnostic attributes.

CVT_PPortTca

The PPortTca object controls PPort threshold crossing alarm configuration.

CVT_RefTimeServer

The Reference Time Server object synchronizes time between an NTP reference time
server and a switch.

CVT_ServiceName

ServiceName binding support allows you to identify a primary port (UNI/NNI) with a
name so that a circuit can identify its service endpoint by this name instead of by the
LPort name. The primary LPort can be a Frame Relay or an ATM UNI/NNI LPort. To
associate a backup binding with the primary service name binding, associate a switch
port to act as a backup LPort.

When creating a service name binding, specify only the primary LPort. This primary
binding cannot be modified.

To set up or modify a backup binding, modify the ServiceName object by specifying
the backup LPort. The attribute CVA_ServiceNameActiveBinding indicates the
current status of binding. To revert from backup binding to primary binding, set the
attribute CVA_ServiceNameActiveBinding to Primary in the modify request.

CVT_SmdsAddressPrefix

An SMDS address prefix is created on a switch to indicate that the switch handles all
E.164 addresses that begin with that prefix. You must create an address prefix before
you can create an SMDS local individual address that uses that prefix.

NavisXtend Provisioning Server User's Guide 1-29



Overview

Descriptions of Object Types

You can create an address prefix at any time. You can delete an address prefix only if
it is not referenced by any SMDS local individual address. No attributes apply to
address prefixes.

CVT_SmdsAlienGroupAddress

Objects of thistype are used only as members of a group screen. Use this object type

to add a group address to an SMDS group screen, if the group address does not exist

on the switch as a switch group address (see “CVT_SmdsSwitchGroupAddress” on

pace 1-32). In this case, you must first create an SMDS alien group address before you
can add the group address to the SMDS group scFeato so, issue an Add

command with norguments. Then, issue the Add Member command to add the
address to the group screen.

CVT_SmdsAlienindividualAddress

>

Objects of this type are used only as members of an individual screen. Use this object
type to add an address to an SMDS individual screen, if the address does not exist on
the switch as a local individual address (88€T_SmdsLocallndividualAddress” on

pace 1-31). In this case, you must first create an SMDS alien individual address before
you can add the address to the SMDS individual scii@edo so, issue an Add

command with norguments. Then, issue the Add Member command to add the
address to the individual screen.

The Add command can fail or cause problems in the switch if the alien
individual address uses a prefix that is assigned to the switch. By definitiop, an
alien individual address should use a prefix not currently defined anywherg in

the network.

CVT_SmdsCountryCode

Specify this object on the network level using up to 3 digits in E.164 folimaise a
country code in an SMDS local individual address, include a dash ( - ) between the
country code and the prefix (for example: 1-978932). If you omit the country

code, the server uses the default country code specified in the environment variable
CV_DFLT_SMDS_CC (for details, se&etting EnvironmenVariables” on

pace 2-11).

1-30

NavisXtend Provisioning Server User’s Guide



Overview
Descriptions of Object Types

CVT_SmdsGroupScreen

There is only one group screen per SMDS L Port, and you must explicitly createit.
Create the group screen before you add addressesto it. Once you create the group
screen, you can add switch group addresses or alien group addresses as members.
When you create a netwide group address, a switch group addressiis created
automatically.

You can use an SMDS screen to either allow or disallow specific addresses for an
L Port. Use the attribute CVA_GroupScreenOperation to do so.

CVT_SmdsindividualScreen

Thereisonly oneindividual screen per SMDS L Port, and you must explicitly createit.
Create an individual screen before you add addresses to it. Once you create the
individual screen, you can add addresses or alien addresses as members.

An SMDS screen can be used to allow or disallow specific addresses for the LPort.
Use the CVA_Individual ScreenOperation attribute to do so.

CVT_SmdsLocallndividualAddress

In NavisCore, an SMDS local individua address is known as an individual address.

You create this object on an LPort to associate that address with the LPort. The

address must use a prefix that has already been created on that switch. You can aso

use an existing country code specified in the network (see “CVT_SmdsCountryCode”

on page 1-3Pas part of the local individual address. You cannot delete an LPort until
you have deleted all its local individual addresses.

CVT_SmdsNetwideGroupAddress

A netwide group address is a collection of SMDS switch group address objects. You
create and manage group addresses through these objects and not through SMDS
switch group address objects. You must create a netwide group address in the
appropriate subnetwork before you can add members (individual addresses) to it. You
must also use the Delete Member command to remove all of the netwide group
address members before you can delete the netwide group address itself.

CVT_SmdsSSlindividualAddress

This object is obsolete, but is maintained for compatibility with previous versions of
the Provisioning Server. The SniDxi LPort does not have to subscribe to an address
from an SSI LPort's address pool even if the LPort is multiplexed to an SSI LPort.
You can perform any SMDS configuration without creating the SSI individual address
pool.

NavisXtend Provisioning Server User's Guide 1-31



Overview
Descriptions of Object Types

CVT_SmdsSwitchGroupAddress

An SMDS switch group address does not appear in NavisCore. This object represents
agroup addressthat islocal to a switch. A switch group address with a given address
should exist on a switch only if the equivalent netwide group address has members on
that switch; it lists the addresses of that switch that are members of the equival ent
netwide group address. The only time you should need to reference a group address
directly isto add one to a group screen.

You should not have to create or del ete objects of thistype; they are created and
deleted automatically during the management of SMDS netwide group addresses.
However, since you cannot delete a netwide group address if it contains any group
address members, in rare cases, you may need to delete a group address manually.
You cannot delete a group address until it no longer containsindividual address
members.

CVT_Spvc

Soft PV C circuits areidentified by an endpoint at one end and the SVC Address at the
other end. The other endpoint may not necessarily exist in the same network. You can
add, modify, and delete this object. This object type applies only to CBX 500 and GX
switches. Since only ATM endpoaints are supported, only VPl and VCI values are
supported. Specify the SV C Address using attributes.

CVT_SvcAddress

SvcAddress provides an interface to set up full ATM addresses (20 octets) on an
LPort. This address is associated with the following L Port types located on CBX 500
switches:

e atmUniDte
e atmUniDce
e atmNni

Frame Relay addresses are associated with the following LPort types located on
B-STDX 8000 and 9000 switches:

» frUniDte

» frUniDce

There can be zero or more SvcAddresses configured per LPort.
An ATM Address can be one of the following format types:

« E.164native

1-32 NavisXtend Provisioning Server User’s Guide



Overview
Descriptions of Object Types

e AESA addresses:
— E.164AESA
— DCCAESA
— ICDAESA
— CustomAESA
— DCCAnycastAESA
— ICDAnycastAESA
— E.164AnycastAESA

For AESA addresses, if the address prefix is 39 characters, the Provisioning Server
appends a zero to the address to make it 20 octets.

For Frame Relay SVCs, E.164native and X.121 are valid formats.

For information on the convention used to specify SVC addresse'§\é€e
Addressing” on page 1-44

CVT_SvcConfig

Use this object to configure an LPort for switched virtual circuits.

Only one SvcConfig object is associated with an LPort. An LPort is created with a
default SvcConfig; you can only modify this object to change an SVC configuration.
The SvcConfig is deleted when its LPort is deleted.

CVT_SvcCUG

Use this object to configure SVC Closed User Groups. You can create this object
under the Network object. Each SVC Closed User Group can contain up to 128
members. You cannot perform a database-only modification on this object, since the
modification has to be distributed throughout the network.

CVT_SvcCUGMbr

Use this object to create the association of an SvcCUG object and an
SvcCUGMBbrRule. Deleting this type of object disassociates the specified SvcCUG
with the SvcCUGMbrRule. Adding, modifying, and deleting an SvcCUGMbr object
requires network distribution; you cannot perform a database-only modification on
this object.

NavisXtend Provisioning Server User's Guide 1-33



Overview

Descriptions of Object Types

CVT_SvcCUGMbrRule

During creation of thisobject, adistribution list is created by matching itsruleto ATM
SVC prefixes, addresses, and user parts configured on nodes in the network. Adding,
modifying, and deleting an SvcCUGMbrRule object requires network distribution;
you cannot perform a database-only modification on this object.

CVT_SvcNetworkld

This object provides an interface to add SV C Network IDs to an LPort. A NetworklD
object can be configured only on the following types of LPorts:

atmUniDte
atmUniDce
atmNni
frUniDte

fruniDce

Valid address format types for this object are:

Carrier ID Code (CIC)

The address prefix can be from 1 to 8 characters long. The nBits value is
calculated as the string length of the address prefix * 8.

Data Network ID Code (DNIC)

Only the frUniDte and frUniDce LPorts support this format. The address prefix is
4 characters long. Thus, the calculated nBits value is always 32.

Setting the nBits value is optional. If you set an incorrect value, the Provisioning
Server returns an error.

CVT_SvcNodePrefix

This object provides an interface to add node prefixes on a switch. The switch imposes
no constraints on the node prefixes except to enforce the maximum length (which is
the same as a full address length — 20 octets). For AESA addresses, if the address
prefix is an odd number of characters, the Provisioning Server stuffs the last 4 bits of
the last octet with zeros, thereby appending a zero to the address prefix.

1-34

NavisXtend Provisioning Server User’s Guide



Overview
Descriptions of Object Types

The valid address format types for ATM SV Cs are the same as described for the
CVT_SvcAddress object (see “CVT_SvcAddress” on page 1-32Zor Frame Relay
SVCs, E.164native and X.121 are valid formats. There can be zero or more
SvcNodePrefixes configured per switch.

For information on the convention used to specify SVC addresse'§\s€e
Addressing” on page 1-44

CVT_SvcPrefix

This object provides an interface to set up prefixes on an LPort. Prefix is one of the
three classes of static addressing used for switched virtual circuits. The other classes
are full ATM Address and Node Prefix.

Prefix is associated with the following LPort types located on CBX 500 switches:
* atmUniDte

* atmUniDce

e atmNni

Frame Relay SVC prefixes are associated with the following LPort types located on
B-STDX 8000 and 9000 switches:

* frUniDte

» frUniDce

There can be zero or more SvcPrefixes configured per LPort.
An ATM Address prefix can be of the following format types:
* E.164native

e AESA addresses:
— E.164AESA
— DCCAESA
— ICDAESA
— CustomAESA
— DCCAnycastAESA
— ICDAnycastAESA
— E.164AnycastAESA

« DefaultRoute: Use this format to configure the port with an ATM address length
of zero bits. This enables this port to receive messages that could not be routed to
other ports because of ATM address mismatch.

NavisXtend Provisioning Server User's Guide 1-35



Overview

Descriptions of Object Types

For Frame Relay SV Cs, E.164native, DefaultRoute, and X.121 are valid formats.

For AESA addresses, if the address prefix is an odd number of characters, the
Provisioning Server stuffsthelast 4 bits of the last octet with zeros, thereby appending
azero to the address prefix.

For information on the convention used to specify SV C addresses, see “SVC
Addressing” on page 1-44

CVT _SvcSecScn

This object exists on the network level. Its name is used by the AssignedSvcSecScn
object to apply screening to an LPort. Modify and delete operations require network
wide distribution; you cannot perform database-only modification on this object.

CVT _SvcSecScnActParam

This object exists under the LPort object and is populated/deleted automatically with
LPort creation. One instance exists for each ATM UNI LPort on a CBX 500 switch.

CVT _SvcUserPart

CVT_Switch

Use this object to set up the user part on a DTE LPort on a CBX 500 switch. It is used
for dynamic address registration at a UNI. The user part address length is 7 octets, of
which End System ldentifier (ESI) represents 6 octets and the selector represents 1
octet. The user part represents a partial SVC address associated with ATM DTE
LPorts on the node. The rest of the address is the network prefix, which is supplied by
the network side of the UNI. To obtain an ATM address for a terminal on the user side
of a Private UNI, append values for the user part to network prefix(es) for that UNI.

You can create UserParts (zero or more) only on ATM DTE LPorts.

For information on the convention used to specify SVC addresse§\é€e
Addressing” on page 1-44

The Provisioning Server does not support adding or deleting switches; you must use
NavisCore to do so. For an existing switch, you can read or modify any switch
attribute except for the CVA_SwitchName attribute, which is Read-Only.

1-36

NavisXtend Provisioning Server User’s Guide



Overview
Descriptions of Object Types

CVT _TrafficDesc

The Provisioning Server provides support for maintaining a pool of ATM traffic
descriptors. The traffic descriptors are required for setting up forward and backward
traffic descriptors for Soft PV Cs. Each traffic descriptor isidentified by aname. An
ID isautomatically associated with each name.

Depending on the Quality of Service (QoS) class you select and the Type of Service
associated with it, you need to provide the PCR, SCR, and MBS values. Do so using
the attributes CVA_TrafficDescParam1, CVA_TrafficDescParam2, and
CVA_TrafficDescParam3. Only add and del ete operations are supported for ATM
traffic descriptors.

CVT _TrafficShaper

Traffic shaper objects are located under PPort in the containment hierarchy. Only
PPorts on the following cards can have traffic shaper objects:

e 1-port ATM IWU OC3 card
e 1-port ATM CS/DS3 card
e 1-port ATM CS/E3 card

A traffic shaper object is not an independent object. It represents a group of traffic
shaper attributes under a particular PPort type. All the traffic shaper attributes are
essentially the attributes for the belonging PPort. The traffic shaper attributes are

treated as a separate object to provide a clear user interface for the attributes.

Once a PPort is created through NavisCore, NavisCore automatically populates the
PPort with traffic shaper attributes. You can only modify traffic shaper attributes; the
Provisioning Server does not support creating them.

When you issue a ListContained command on a traffic shaper object, the only valid
parent object type is PPort.

NavisXtend Provisioning Server User's Guide 1-37



Overview

Descriptions of Object Types

CVT_Trunk

A trunk object alows two switches to pass data to each other. A Direct Line trunk
connects two switches directly. An OPTimum trunk connects two switchesviaa
public data network.

You can use the Provisioning Server to add atrunk. However, if you want NavisCore
map to show the trunk connection between the switches, you must use NavisCoreto
add the connection to the map.

You specify atrunk by its name:
Trunk.NYLA

If the trunk string name contains one of the following special characters. “ * 1 {} () $
& ;\'| " or blank character, you must enclose at least the special character with /”
characters:

TrunkName.Boston/"&/"NY

If the trunk string name contains a period, you must enclose the entire string with /”
characters:

TrunkName./"Boston.NY/"

You do not need to enclose the following special characters. +=-_@#"%,:[ ]/~

CVT_VPClITable

CVT_VPN

The VPCI table object maps a particular PSA VPCI to a PSC VPl when proxy
signaling isin use. When proxy signaling is not in use, the VPCI table augments the
currently-available VPCI to V CI mapping mechanism by allowing you to customize
the mapping. For the VPCI table to work properly, both the Proxy Signaling Agent
and all Proxy Signaling Clients must use the same type of VPCI to VPI mapping.

Creation and deletion of VPN objects occur at the network level. Use the attribute
CVA_L PortVPNName to specify the VPN to which an L Port belongs. Setting
CVA_L PortVPNName to Public makes that L Port a normal public LPort. Similarly,
use the attribute CVA_CircuitVPNName to specify the VPN to which a circuit
belongs. Both end points of acircuit may not belong to different VPNs.

1-38

NavisXtend Provisioning Server User’s Guide



Overview

Valid Object Types for Operational Functions

Valid Object Types for Operational Functions

Table 1-4 lists the object types you can use when you issue the operational functions

and commands of the APl and CLI.

Table 1-4. Valid Object Typesfor Operational Functions

Object Type Add Add Delete Delete Get List List M odify Diag Get
Object | Member | Object | Member All ?ﬁg
APS | O g
AssignedSvcSecScn 0 O 0 0 O O
Card d d ad d
CardTca O O
Channel | g | ad |
ChanPerformanceM onitor O O 0
Circuit O O O O O O O
Customer O O O O O O
DefinedPath 0 a
L Port | 0@ | b | | O g O
NetCac | | g
Performance Monitor O O O
PFdI | O g
PMP Circuit Leaf Endpt 0 O O O a0
PMP Circuit Root Endpt g O g g m]
PMP SPVC Leaf Endpt | | O O g
PMP SPVC Root Endpt | | g | | g
PnniNode g O g d ad
PPort | | O g O
PPortTca O a
RefTimeServer g O g d ad
Service Name O O O O O O
SMDS Address Prefix | | g | | g
SMDS Alien Group 0 0 0 O O O
Address
NavisXtend Provisioning Server User's Guide 1-39



Overview
Valid Object Types for Operational Functions

Table 1-4. Valid Object Typesfor Operational Functions (Continued)

Object Type Add Add Delete Delete Get List List Modify Diag Get
Object | Member | Object | Member All ?ﬁg

SMDS Alien Individual O O O O O 0
Address

SMDS Country Code O O O O O O
SMDS Group Screen | O | O g | O g
SMDS Individua Screen g O g O g g O ad
SMDS Local Individual O O O O O 0
Address

SMDS Netwide Group O ] O O O O O O
Address

SMDS Switch Group O O O O O
Address

Soft PVC Circuit O O O O 0
SVC Address | | g | g
SVC Config O O
SVC CUG | | O O g
SVC CUG Member | | g | g
SVC CUG Mbr Rule g g g O ad
SVC Network ID | | O | O g
SVC Node Prefix | | g | g
SVC Prefix g g g O ad
SV C Security Screen O O O O O O
SVC SecScnActParam | | | g
SVC UserPart 0 O 0 0

Switch | O O g
Traffic Descriptor 0 O O O

Traffic Shaper 0 O O
Trunk O O O O O 0
VPCI Table | | g | O g
Vitua Private Network g g g g O ad

2 For binding an MLFRMember LPort to an MLFRBundle L Port
b For unbindi ng an MLFRMember L Port to an MLFRBundle L Port

1-40 NavisXtend Provisioning Server User’s Guide



Overview
Object Attributes

Object Attributes

For each of the managed objects supported by the Provisioning Server, there are
arguments (attributes) that can be read or configured through the API or CLI. An
argument list is represented as follows:

In: Argument List represented as:

C An opaque pointer that is manipulated using utility functions.
C++ A class that is manipulated using member functions.
CLI String representations of the attributes.

The NavisXtend Provisioning Server Object Attribute Definitions lists the various
object types supported by the Provisioning Server and their associated attributes. See
that guide to determine which attributes apply to which object types.

Circuit Provisioning

The Provisioning Server uses aretry control to ensure reliability and accuracy of
circuit provisioning. Theretry control is used for provisioning circuits on B-STDX
8000, B-STDX 9000, CBX 500, and GX 550 switches. This control specifies retry
behavior in the event of afailed attempt to add, delete, or modify acircuit.

By default, when the Provisioning Server receives arequest to add, delete, or modify a
circuit, the server abtains card status for both circuit endpoints:

» If both cards are up, the Provisioning Server performs the add, delete, or modify
request as normal.

« If either card is down or is not reachable (for example, because of an SNMP
timeout), the server retries the request for card status as many times as specified
by the retry control (in the range of 0 to 5 times):

— If the card becomes reachable and is up, the Provisioning Server performs the
circuit provisioning request.

— Once all retries have been issued, if the card is still not reachable or is still
down, the provisioning request is not performed.

The control that specifies retry behavior of circuit provisioning requests takes the
following forms:

NavisXtend Provisioning Server User's Guide 1-41



Overview
Circuit Provisioning

In: Retry Control represented by:

API C functions: CvSetNumRetries and CvGetNumRetries
C++ functions: setNumRetries and getNumRetries
(Seethe NavisXtend Povisioning Server gramme’s Refeenc.)

CLI Environment variable CV_CLI_NUM_RETRIES
(See“Specifying Retry Behavior” on pag@-13)

MIB NumRetries attribute

(See"NumRetries Attribute” on pag4-9)

This control prevents circuits from being partially provisioned and the database from
becoming out of sync with the switch. However, it can increase the time it takesto
provision acircuit, depending on how many card status checks occur.

Keep in mind that this control affects the retry behavior of circuit provisioning
requests only. Other retry controls specified in cascadeview.cfg
(CV_SNMP_MAX_RETRIES, CV_SNMP_RETRY_INTERVAL, and
CV_SNMP_REQUEST_TIMEOUT) also apply to each request. Remember to
consider these other retry controls when specifying retry behavior of a circuit request.

Related Error Reporting

Whenever the Provisioning Server determines that a card is down or is not reachable,
and thus acircuit provisioning request cannot be performed, the server returns an error
indicating the reason for failure and specifying which card is affected.

If the card becomes reachable and is up, the Provisioning Server performs the circuit
provisioning request. During the provisioning process, if either endpoint returns an
error (such as SnrmpTimedOut, SnmpBadValue, or SnmpNoSuchName), the server
returns an error indicating the reason for failure and specifying which endpoint is
affected (including switch name, LPort name, slot 1D, PPort ID, and DLCI number).

MIB clients can query the Command Error Table to obtain this error information.

Environment Variable to Override Status Check

If you do not want the Provisioning Server to obtain card status prior to provisioning
circuits, you can override the ser\edefault behavioTo do so, set the server
environment variable CV_CARD T3TS to DISABLE.

For details, se&Disabling Card Status Checking” on pge2r20.

1-42

NavisXtend Provisioning Server User’s Guide



Overview

Bit Mask
Bit Mask
Table 1-5 describes Provisioning Server bit mask configuration.
Table 1-5. Bit Mask Configuration
Card PPortChDs3Channels PPort Channel L Port
InUse? or Allocated Allocated | Fractional
ChannelsinUse?” Gl G DS0s®
Count/® Count¥
Allocated Allocated
Channels® | Channels®
4Ports24Channel sFractT1 ChannelsinUse O O
4Ports30Channel sFractE1l ChannelsinUse a O
4PortsUnchannelizedT1 ChannelsinUse O
4PortsUnchannelizedE1l ChannelsinUse a
4Ports24Channel SDSX ChannelsinUse O O
10PortsDSX1 CannelsinUse a
1PortChannelizedDs3 ChDS3ChannelsinUse O O
1PortChannelizedDS310 ChDS3ChannelsinUse a a
12PortsUnchannelizedE1l ChannelsinUse O

a8 |ndicates which of the 28 DS1s haslogical port allocations. For example, if channel 28 contains a
logical port, then the value of ChDS3ChannelsinUse is 1342177278, which is the equivalent of
10000000000000000000000000000 in binary. If channel 11 contains alogical port, the value of
ChDS3ChannelsinUse is 1024, or 10000000000 in binary. The bit set is the 11th bit in the bit
mask, corresponding to the 11th channel.

Indicates which of the DSOS/TS0s have been assigned to logical ports. For example, if channel 28
isassigned to alogical port, then the value of ChannelsinUse is 1342177278, which is the
equivalent of 270000000000000000000000000000 in binary. If channel 11 is assigned to alogical
port, then the value of ChannelsinUse is 1024, or 10000000000 in binary. The bit set isthe 11th
bit in the bit mask, corresponding to the 11th channel.

¢ Shows the number of DSOs that are allocated for this DS1 channel.

d" Shows which DSOs are allocated. For example, if DS0s 1, 2, and 8 are allocated on one DS1, then
the value for AllocatedChannel Count is 3, because 3 DS0s are allocated. AllocatedChannels has
thevalue of 131, which isthe equivalent of 20000011. Thefirst bitis DS0 8, and the last 2 bitsare
for DSOs 1 and 2. The 8th, 2nd, and 1st bits settings correspond to the 8th, 2nd, and 1st DSOs.

€ Shows which DSOs are assigned to this logical port. For example, DS0s 1, 2, and 8 are allocated
for a particular DS1(see the description for ChannelsinUse), so they are available for assignment
to alogical port. However, if only DSOs 1 and 8 are assigned to alogical port, the value of
FractionalDSOs is 129, or the equivalent of 10000001. Thefirst bitisfor DSO 8, and the last bit is
for DSO 1. The 8th and 1st bits settings correspond to the 8th and 1st DSOs.

NavisXtend Provisioning Server User's Guide 1-43



Overview
SVC Addressing

SVC Addressing

SV C addresses are represented as strings, using the following convention:
<Address-Format-Type-I D>-<Address-Prefix>-<nBits>
Address-Format-Type-1D isthe number that represents the format of the SV C address.
Valid values are as follows:

1 — E.164native

2 — DCCAESA

3 — ICDAESA

4 — E.164AESA

5 — CustomAESA

6 — DefaultRoute

7 — UserPart

8 — Carrier ID Code (CIC)

9 — Data Network ID Code (DNIC)

10— X.121

11 — DCCAnycastAESA

12 — ICDAnycastAESA

13 — E.164AnycastAESA

Address-Prefix is the complete SVC address prefix. For AESA addresses, if the
address prefix is an odd number of characters, the Provisioning Server stuffs the last 4
bits of the last octet with zeros, thereby appending a zero to the address prefix. For
CIC addresses, the address prefix can be from 1 to 8 characters long. For DNIC
addresses, the address prefix is 4 characters long.

nBits is the number of bits. This field is optional for all address formats except for
DefaultRoute. For DefaultRoute, you must specify the number of bits as zero.

For other address formats, if you omit this field, the Provisioning Server calculates
the value and appends it to the address prefix. The algorithms used to calculate nBits
values are presentedTable 1-6

Table 1-6. Calculated nBits Values

Address Format Type Address-Format-Type-ID Calculated nBits Value
E.164native 1 string length of address prefix * 8
DCCAESA 2 (integral-part-of ((string length of

address prefix + 1)/2)*8)

1-44 NavisXtend Provisioning Server User’s Guide



Overview
SVC Addressing

Table 1-6.

Calculated nBits Values (Continued)

Address Format Type Address-Format-Type-ID Calculated nBits Value
ICDAESA 3 (integral -part-of ((string length of
address prefix + 1)/2)* 8)
E.164AESA 4 (integral-part-of ((string length of
address prefix + 1)/2)* 8)
CustomAESA 5 (integral-part-of ((string length of
address prefix + 1)/2)*8)
UserPart 7 56
Carrier ID Code (CIC) 8 string length of address prefix * 8
Data Network 1D Code 9 string length of address prefix * 8
X.121 10 string length of address prefix * 8
DCCAnycastAESA 11 (integral-part-of ((string length of
address prefix + 1)/2)* 8)
ICDANycastAESA 12 (integral-part-of ((string length of
address prefix + 1)/2)*8)
E.164AnycastAESA 13 (integral-part-of ((string length of

address prefix + 1)/2)* 8)

String Conversion

In the following cases, the Provisioning Server performs an address string conversion:

* When you omit the nBits field, the Provisioning Server calculates and appends an

nBits value to the prefix address.

* When an address prefix of an AESA address is an odd number of characters, the
Provisioning Server appends a zero to the prefix address.

A converted string is equivalent to the original string. Either address string can be

used in an operation.

Each of the address formats is described in the following sections.

NavisXtend Provisioning Server User's Guide

1-45



Overview
SVC Addressing

E.164native

Specify an E.164native address as a numeric string of 1 - 15 characters.

For example:
1-12345

where 1 specifies the address format type E.164native, and 12345 represents the
address prefix. Since no nBits value is specified, the Provisioning Server calculates a
value and appendsiit to the address. The string is converted to:

1-12345-40

AESA Addresses

Specify an AESA address as a hexadecimal string. The first two characters of the
address prefix represent the AFI value. The address prefix must be in the range of 2 -
40 characters. The number of bits must be in the following range:

(integral-part-of ((string length of address - 1)/2)* 8)< nBits <
(integral-part-of ((string length of address + 1)/2))*8

The minimum value for nBitsis 8.

In the case of CustomAESA format, the AFI value can be any two hexadecimal
characters.

If the address prefix isan odd number of characters, the Provisioning Server stuffsthe
last 4 bits of the last octet with zeros, thereby appending a zero to the address prefix.

Standard AFI values are:

39 — DCCAESA

45 — E.164AESA

47 — ICDAESA

BD — DCCAnycastAESA
C5 — ICDAnycastAESA

C3 — E.164AnycastAESA

Example 1
2-39

where 2 specifies the address format tiJieCAESA, and 39 represents the address
prefix (consisting of the AFI value only).

1-46

NavisXtend Provisioning Server User’s Guide



Overview
SVC Addressing

Since no nBits valueis specified, the Provisioning Server calculates a value and
appendsiit to the address. The string is converted to:

2-39-8

Example 2

2-391234567890abcde
where 2 specifies the address format type DCCAESA, and 39123456789%abcde
represents the address prefix. Since no nBits value is specified, the Provisioning
Server calculates avalue and appendsit to the address. And, because the address

prefix is an odd number of characters, the Provisioning Server appends a zero to the
address prefix. The string is converted to:

2-391234567890abcde0- 72

Example 3
2-391234567890abcde- 70

where 2 specifies the address format type DCCAESA, 391234567890abcde
represents the address prefix, and 70 represents the nBits value. In this example, the
valid range for nBitsis:

(integral-part-of ((17 - 1)/2)*8) < nBits < (integra-part-of (17 + 1)/2))*8
64 < nBits< 72

Because the address prefix is an odd number of characters, the Provisioning Server
appends a zero to the address prefix. The string is converted to:

2-391234567890abcde0- 70
Example 4
5-ff1234-23

where 5 specifies the address format type CUStOmAESA, ff1234 represents the
address prefix (with AFI value ff), and 23 represents the nBits value. In this example,
the valid range for nBitsis:

(integral-part-of ((6 - 1)/2)*8) < nBits < (integral-part-of ((6 + 1)/2))*8

16 < nBits< 24

NavisXtend Provisioning Server User's Guide 1-47



Overview
SVC Addressing

Example 5
11- BD1234567890abcde- 70

where 11 specifies the address format type DCCAnycastAESA, BD1234567890abcde
represents the address prefix (with AFI value BD), and 70 represents the nBits value.
In this example, the valid range for nBitsis:

(integral-part-of((17 - 1)/2)*8) < nBits £ (integral-part-of((17 + 1)/2))*8

64 < nBits< 72

DefaultRoute

Specify a Default Route address as the address prefix 00 and 0 bits. For example:
6-00-0

where 6 specifies the address format type DefaultRoute, 00 represents the address
prefix, and 0 represents the number of bits.

UserPart
Specify a User Part address as a hexadecimal string of 14 characters.
The value for nBits is 56.
For example:
7-1234567890abcd
where 7 specifies the address format type UserPart, and 1234567890abcd represents
the address prefix. Since no nBits value is specified, the Provisioning Server
calculates a value and appends it to the address:
7-1234567890abcd- 56
X.121
Specify an X.121 address as a numeric string of 1 - 15 characters.
For example:
10- 12345
where 10 specifies the address format type X.121, and 123456 represents the address
prefix. Since no nBits value is specified, the Provisioning Server calculates a value
and appends it to the address:
10-12345- 40
1-48 NavisXtend Provisioning Server User’s Guide



Overview
Class B Addressing

Class B Addressing

The Provisioning Server treats al 1P Addresses as Class B addresses. The server
interprets all addresses as follows:

» First 2 bytes of an IP address are used as the network ID.
» Second 2 bytes of an IP address are used as the switch ID.

The Provisioning Server uses the third byte of the address as the Class B subnet
number. For example, the server interprets the following network address:

128.100.111.0

as network address 128.100.0.0 and subnet number 111.

General APl Usage

This section provides the basic procedures for performing operations with the
Provisioning Server API.

The API operates by establishing a session to the Provisioning Server. The session
maintains internal context between the client and the server: it opens a socket and an
associated file descriptor. More than one session can be open at a time. You should
close a session before the program terminates.

C Program

To use most of the C commands, a client program must follow the following general
steps:

1. IssueCvConnect to establish a session with the Provisioning Server.

2. ldentify the object to be operated on. To do so, iS3@reateObjectTypeld to
fill in the CvObjectld structure.

3. Identify necessary arguments (object attributes) and set values, if needed. To do
so, either:

» Issue a single functiorCyArgsM akeVals or CvArgsM akel ds) that takes a
variable number of arguments and builds the required data structure.

* Issue a series of utility functions that cred@@gArgsMake) and fill in
(CvArgsSetAttrType) the required data structure.

Issue an operational function on the object.

Useselect loop processing functions to receive and process the response.

NavisXtend Provisioning Server User's Guide 1-49



Overview
General API Usage

6. Once the request has been processed, issue CvAr gskree to free the memory used
by the argument list.

7. When the application exits, issue CvClose to terminate the session with the
Provisioning Server.

C++ Program

To use most of the C++ commands, a client program must follow these general steps:

1. Establish asession with the Provisioning Server. To do so, create a CvClient class
and issue the CvClient::open function to pass CvClient arguments that provide
session context.

2. ldentify the object to be operated on. To do so, create and set valuesin a
CvClient::Objectld object.

3. ldentify necessary arguments (object attributes) and set values, if needed. To do
S0, create and set valuesin a CvClient:: Args object.

I ssue an operational function on the object.
Use select loop processing functions to receive and process the response.

When the application exits, terminate the session with the Provisioning Server. To
do so, either:

» IssueCvClient::close. This function does not delete tG@Client class
object, but does terminate the session with the Provisioning server.

* Use theCvClient destructor.

1-50 NavisXtend Provisioning Server User’s Guide



Installation and Administration

This chapter describes hardware and software requirements and how to perform anew
installation of the Provisioning Server and the Application Toolkit. It also describes
the steps required for the following administrative tasks:

» Setting environment variables to configure the various components of the
Provisioning Server system

e Stopping and restarting the Provisioning Server and the CLI
» Troubleshooting problems with the Provisioning Server

» Developing a provisioning application

Prerequisites

This section describes the hardware and software required by the NavisXtend
Provisioning Server.

This product requires one or more workstations: one is designated as the Provisioning
Server and the others are designated as the Provisioning clients. The Provisioning
Server and clients can reside on the same workstation.

Provisioning Server Requirements
This section lists the minimum requirements for the Provisioning Server.

Server Hardware

To run the Provisioning Server, you must have an UltraSparc2 or equivalent with the
following minimum hardware:

e 70 MB disk space

e CD-ROM drive

NavisXtend Provisioning Server User’'s Guide 2-1



Installation and Administration
Prerequisites

>

The CPU and RAM requirements for the Provisioning Server depend on the number
of clientsthat will issue requeststo the server. Typically, CPU or RAM requirements
are less than those required for a NavisCore installation. For details, see the
NavisCore Network Management Station Installation Guide.

Server Software

The Provisioning Server requires NavisCore. A minimum of NavisCore Release
04.01.01.00 must be installed on a network workstation to at least the point where the
Sybase database isinstalled and configured. The Provisioning Server can be installed
on either the same host as Naviscore or on adifferent host, aslong as the Provisioning
Server can reach the Sybase database and the switches.

Before you install the Provisioning Server software, verify that the following software
programs are installed (for instructions, see the NavisCore Network Management
Sation Installation Guide):

Sun Microsystems SunSoft™ Solaris® 2.5.1 cluster patch
(2.5.1_Recommended.tar.Z) OR Solaris 2.6 plus Solaris 2.6 cluster patch
(2.6_Recommended.tar.Z)

SYBASE Open Server™, Release - The relational database software program

for storing database information and providing backup and recovery of database files.
This software must be installed on the network and the Provisioning Server must be a
client of that database.

NavisCore, Version 04.01.01.00 — The Provisioning Server installation utilizes the
NavisCore-specific installation procedures. Thus, at a minimum, this software must be
installed to the point where the SYBASE database is installed and configured.

Ascend recommneds that this release of the Provisioning Server be used With the
following software versions:
- Solaris 2.6

- SYBASE 11.0.3.3

Provisioning Client Requirements

This section lists the minimum requirements for the Provisioning client.

Client Hardware

The minimum hardware required to run a NavisXtend Provisioning client is any Sun
SPARCstation or equivalent. The Provisioning Server Application Toolkit requires
approximately 15 MB of disk space.

NavisXtend Provisioning Server User’s Guide



Installation and Administration
Installation Instructions

Client Software

Before you install the Application Toolkit software, verify that the following software
programs are already installed on the workstation:

Sun Microsystems SunSoft Solaris2.5.1 plus Solaris 2.5.1 cluster patch
(2.5.1_Recommended.tar.Z), OR Solaris 2.6 plus Solaris 2.6 cluster patch
(2.6_Recommended.tar.Z)

SPARCWorks™ compiler version 4.0, 4.1, or 4.2— The compiler required to
compile a C or C++ program. This software is required only if you plan to write a C or
C++ program; it ishot required if you plan to use the CLI only.

SMIv2 MIB compiler — An SMIv2-compliant compiler required to compile the
Provisioning Server MIB. This software is required only if you plan to use the
Provisioning Server MIB; it isot required if you plan to write a C or C++ program or
use the CLI only.

> Ascend recommneds that this release of the Provisioning Server be used With the
following software versions:

- Solaris 2.6

- SPARCWorks compiler 4.2

Switch Requirements

For minimum switch software revisions required by the Provisioning Server, see the
Software Release Notice for NavisCore Release 04.01.01.00.

Network Requirements

The Provisioning Server must be configured in a TCP/IP network and must have
access to the Ascend switches.

The Provisioning client must have access to the Provisioning Server over a local-area
or wide-area network.

Installation Instructions

This section describes how to install the Provisioning Server and the Provisioning
Server Application Toolkit.

For instructions on upgrading your Provisioning Server software from a previous
version, see thBoftware Release Notice for NavisXtend Provisioning Server.

NavisXtend Provisioning Server User’'s Guide 2-3



Installation and Administration
Installation Instructions

For any updates to this installation procedure, see the Software Release Notice for
NavisXtend Provisioning Server.

Installing the Provisioning Software in a Single-System
Configuration

This section describes how to install the Provisioning Server software on the same
workstation asthe SY BASE database and NavisCore. The procedure requires that you
aready have NavisCore installed and that the database contains information on the
switches that you wish to access through the server.

> Theinstallation script prompts you for the Sybase DSQUERY name, NavisCore
Sybase database name, and Sybase administrator name and password. Determine
these values before you begin the installation.

Toinstall the Provisioning Server and the Application Toolkit, perform the following
steps:

1. Logonastheroot user and enter the root password.

2. Insert the Provisioning Server mediainto the media drive.

3. Enter the following command to start the installation script:

[ medi a device]/install_NAVI Seps

where [media device] isthe name of the machine media device (for example,
/cdrom/cdromo0).

The pkgadd menu appears, listing the NAV 1 Seps package.

The foll ow ng packages are avail abl e:
1 NAVI Seps Navi sXtend Provi sioni ng Server
(sparc) [version #

Select package(s) you wish to process (or ‘all’ to process all
packages). (default: all) [?,??,q]:

> If the installation utility detects another instance of the Provisioning Server on

your system, it prompts whether you want to remove that instance. If you answer
yes, it removes the instance and performs afresh install. If you answer no, the
installation script quits.

2-4 NavisXtend Provisioning Server User’s Guide



Installation and Administration
Installation Instructions

4. Select the NavisXtend Provisioning Server package.

The installation utility prompts you to select the components you want to install
on the machine.

c) Install NAVISXtend Cient

s) Install NAVI SXtend Server

b) Install both NAVI SXtend Cient and Server
g) Exit this install

Sel ecti on:

5. Specify which components you want to install on the machine. You can install the
Provisioning client (which includes the CLI, the Provisioning Server Application
Toolkit client libraries, and the client include files), the Provisioning Server, or
both. The Provisioning Server and client occupy approximately 50 M Bytes of
disk space.

Keep in mind that if you choose to install only the Provisioning Server on a
machine, the CLI binaries and associated links will not be present on that server
machine.

If you choose to install only the client on a machine, skip to Step 19.
6. When prompted, specify whether NavisCore isinstalled on the machine.

If you answer yes, the installation utility prompts you to enter the base directory
where NavisCore isinstalled.

Enter the path to the directory where NavisCore isinstalled.

8. If theinstallation utility detects configuration files on your system, it prompts
whether you want to use these existing files for the installation (instead of having
to enter configuration values). If you answer yes, the utility will create symbolic
links to the configuration files.

9. Theingallation utility prompts whether the file start-server.sh was saved from a
previousinstallation and asks whether you want to re-use the file for this
installation. If you answer yes, the utility prompts you for the path to the file.

10. If theinstallation utility detects MIB filesin /opt/CascadeView/snmp_mibs, it
prompts whether you want to create symbolic links to the MIB filesin the
lopt/ProvServ/snmp_mibs directory. And, it prompts whether you want to create a
symbolic link for the Provisioning Server MIB file (provserv.mib) toin
/opt/CascadeView/snmp_mibs.

11. Indicate your choices to these prompts.
12. When prompted, enter the Sybase DSQUERY name.
13. When prompted, enter the Sybase Database name for the NavisCore database.

14. When prompted, enter the Sybase system administrator user name for the
NavisCore database.

15. When prompted, enter the system administrator password.

NavisXtend Provisioning Server User’'s Guide 2-5



Installation and Administration
Installation Instructions

16. At the verification prompt, re-enter the system administrator password.

Theinstallation utility displays the values you input and allows you to change
them.

17. Make any necessary changes.

18. When prompted, specify whether you want the installation utility to save copies of
the configuration files and start-server.sh at de-install time. If you answer yes,
the utility prompts you for the path where you want to save thefile.

19. Theinstallation utility displays the confirmation message:
Install NAVISXtend [version #7? (y) [vy,n,?,4d]

20. Enter y to continue.
Theinstallation utility prompts you to enter the package base directory.
Enter path to package base directory [?,q]

21. Enter the path to the directory where you want the package installed.

Theinstallation utility performs various verification functions and displays the

message:

Thi s package contains scripts which will be executed with
super-user permission during the process of installing this
package.

Do you want to continue with the installation of this package
[y.n 7]

22. Enter y to continue.
The installation utility completes the installation and displays the message:

Installation of <NAVI Seps> was successful .

The installation of the Provisioning Server is complete. Before you run the server,
perform the post-installation tasks describetHaost-Installationrasks” on pag2-7.

2-6 NavisXtend Provisioning Server User’s Guide



Installation and Administration
Installation Instructions

Installing the Provisioning Software in a Two-System
Configuration

This section describes how to install the Provisioning Server software on a separate
host from NavisCore and SYBASE. For details on how to perform these tasksin
NavisCore, see the NavisCore NMS Getting Started Guide.

1. InNavisCore, add an NMS entry to each switch the Provisioning Server will
provision. Specify the I P address of the host on which the Provisioning Server
will reside.

2. InNavisCore, add an NMS path, specifying the IP address of the host on which
the Provisioning Server will reside.

3. Onthe host on which the Provisioning Server will reside, log in as the root user
and enter the root password.

Create the /opt/sybase directory.

On the NavisCore host, copy the file /opt/sybase/interfaces to the /opt/sybase
directory on the host on which the Provisioning Server will reside.

6. Install the Provisioning Servdg-ollow the instructions ifinstalling the
Provisioning Software in a Single-System Configuration” orefzad.

The installation of the Provisioning Server in a two-system configuration is complete.

Before you run the server or the CLI, perform the post-installation tasks described in
the next section.

Post-Installation Tasks

This section describes post-installation steps you need to perform on the Provisioning
Serve, the CLI, and the Provisioning client.

Modifying the Configuration File

If, during installation, you specified that the installation utility use the default
configuration files provided by the Provisioning Senead your NavisCore database
name is diferent tha cascview, you need to modify thevdb.cfg file. To do so, use a
text editor to modify thevdb.cfg file located in «install directory>/ProvServ/etc.
Change the following entries:

CvDB_DB_NAME=<dat abase- nane>

CvDB_USER NAME=<dat abase- nane>

where <database-name> is the name of the Sybase database for the NavisCore
database.

NavisXtend Provisioning Server User’'s Guide 2-7



Installation and Administration
Installation Instructions

Testing the Server

During server installation, the init program (/etc/inittab) was modified to cause the
system to automatically restart the server process whenever the system reboots. To
start the server manually for testing, issue the following command:

/sbin/init Q <Return>
This command causes the init program to read the file /etc/inittab.

Test the server to make sure that it is running and is accessible. To do so:
1. Logon asauser other than root.
2. Issue aCLI command for an existing switch in the NavisCore database:

/opt/ ProvServ/bin/cvget switch.nn.nn.nn.nn -Locati on<Ret urn>

where nn.nn.nn.nn is the decimal 1P address of the switch. If the Provisioning
Server is operating, the cvget command prints the location of the switch you
specified. Verify that the returned location is valid for that switch.

For instructions on how to troubleshoot problems with the server, see
“Troubleshooting Problems” on pag-22

Setting Environment Variables

There are several environment variables you can set to configure the Provisioning
Serve. Specificaly, you can:

» Specify the servés local port

* Specify the servés core file location
* Enable server trace files

e Control certain SNMP parameters

For instructions on how to set these environment variableSCsadiguring the
Provisioning Server” on pag®-15.

If the CLI and the Provisioning Server are located on the same host, the CLI can locate
the Provisioning Server by default. If the CLI and the Provisioning Server are remote
from one anothe you need to identify the location and port number of the

Provisioning Serve To do so, set the following environment variables in the'sise

shell start-up script (such ashrc, .login, or.profile):

CV_CLI_SERVER_HOST — Set this variable to the IP address of the remote
Provisioning Serve Specify the address in either numeric format (such as
152.148.50.2) or in text format (such as provsgz.com).

2-8

NavisXtend Provisioning Server User’s Guide



Installation and Administration
Installation Instructions

CV_CLI_SERVER_PORT — Set this variable to the port number of the remote
Provisioning Serve

There are other environment variables you can set to configure the CLI. Spegificall
you can:

* Specify whether updates are made to the network component and the database, or
to the database only

* Specify security settings
» Control certain SNMP parameters

For instructions on how to set these environment variableSCseéguring the CLI”
on pa@ 2-12

Testing the CLI

Test the CLI to make sure that it is running and can access the Provisioning Rerve
do so:

1. Log on as a user other than root.

2. Issue a CLI command for an existing switch in the NavisCore database:

/opt/ ProvServ/bin/cvget switch.nn.nn.nn.nn -Locati on<Ret urn>

where nn.nn.nn.nn is the decimal IP address of the switch. If the CLI is operating
and can access the Provisioning Sertre cvget command prints the location of
the switch you specified/erify that the returned location is valid for that switch.

For instructions on how to troubleshoot problems with the CLI; Semibleshooting
Problems” on pag2-22

Recompiling an Existing Provisioning Client

If you have a Provisioning application that was built with a previous version of the
Provisioning Server Applicatiofoolkit and you want to use the new features of the
Provisioning Server API, you need to make the necessary code changes for the new
functions and attributes, and recompile and relink your program with the new API.

If you do not want to use the new features of the Provisioning Server API, no code
changes are necesgarou need only to recompile and relink your program with the
current version of the API include files and libraries.

NavisXtend Provisioning Server User’'s Guide 2-9



Installation and Administration
Installation Instructions

Installed Files

Once you install the toolkit, the CLI commands and the files you need to write a
program with the API are present on the workstation hard disk:

Command lineinterface and binary file — Contained in the file
lopt/ProvServ/bin/cli, as well as various links contained in /opt/ProvServ/bin.

Client libraries— Contained in the directory /opt/ProvServ/lib.
Client include files— Contained in the directory /opt/ProvServ/include.

Sample code — Contained in the directory /opt/ProvServ/src. The C++ sample code
is in the file CircuitDefinedPath.C.

Programming Files

Table 2-1lists the files (located in the directory /opt/ProvServ/include) necessary for
development of an NavisXtend Provisioning client program.

Table2-1. Programming Filesfor Client Development

File Description

ProvClient.h Header filefor the C APIs; contains definitions and function
prototypes. If you are programming in C, include thisfilein
your source code.

CvClient.H Header file for the C++ APIs; contains definitions and
function prototypes. If you are programming in C++,
include thisfilein your source code.

CvDefs.H Contains some definitions that are common to both the C
and C++ APIs. The ProvClient.h and CvClient.H files
contain a#include statement that incorporates CvDefs.H.
Therefore, aslong as you include either ProvClient.h or
CvClient.H, you do not need to explicitly include
CvDefs.H in your source code.

CvObjectType.H Defines the enumerated object types used by both the C and
C++ APIs. TheProvClient.h and CvClient.H filescontain
a#include statement that incorporates CvObjectType.H.
Therefore, aslong as you include either ProvClient.h or
CvClient.H, you do not need to explicitly include
CvObjectType.H in your source code.

2-10 NavisXtend Provisioning Server User’s Guide



Installation and Administration
Setting Environment Variables

Table2-1. Programming Filesfor Client Development (Continued)

File

Description

CvArgld.H

Defines all argument I Ds used by both the C and C++ APIs.
The ProvClient.h and CvClient.H filescontain a#include
statement that incorporates CvArgld.H. Therefore, aslong

asyou include either ProvClient.h or CvClient.H, you do
not need to explicitly include CvObjectld.H inyour source
code.

CvParamValues.H

Defines the values for each of the enumerated attributes
used by both the C and C++ APIs. Include thisfilein your
source code.

CvObjectid.H

Defines the CvObjectld structure used by the C API to
identify objects. ProvClient.h contains a#include
statement that incorporates CvObjectld.H. Therefore, as
long as you include the ProvClient.h file, you do not need
to explicitly include CvArgld.H in your source code.

CvUSL.H

Defines simple wrapper classes for various unsigned long
data types used by the C++ APIs. CvClient.H contains a
#include statement that incorporates CvUSL.H. Therefore,
aslong as you include CvClient.H, you do not need to
explicitly include CvUSL.H in your source code.

CvE1l64Address.H

Defines a helper class used in the C++ APls. CvClient.H
contains a #include statement that incorporates
CvE164Address.H. Therefore, aslong as you include
CvClient.H, you do not need to explicitly include
CvE164Address.H in your source code.

CvSVCAddress.H

Defines a helper class used in the C++ APIs. CvClient.H
contains a#include statement that incorporates
CvSVCAddress.H. Therefore, aslong as you include
CvClient.H, you do not need to explicitly include
CvSVCAddress.H in your source code.

CvErrors.H and
CvErrors.h

Define the errorsthat can be returned by the APIsaswell as
errors implemented by NavisCore. You do not need to
include either of these filesin your source code.

Setting Environment Variables

This section describes how to set environment values to configure the behavior of the
CLlI, the Provisioning client, and the Provisioning Server. To configure the
Provisioning Server, add the environment variables to the start-up script that launches
the server. To configure the Provisioning client or the CLI, add the environment
variables to the user’s shell start-up script, suchsisc, .login, or.profile.

NavisXtend Provisioning Server User’'s Guide

2-11



Installation and Administration
Setting Environment Variables

Configuring the CLI

There are several environment variables you can use to configure the CLI.
Specifically, environment variables perform the following:

Identify the Provisioning Server to which the CLI sends requests.

Specify whether updates are made to the network component and the database, or
to the database only.

Control retry behavior of circuit provisioning requests.
Specify security settings.

Control certain SNMP parameters.

The best way to set the environment variables is to add them to the user’s shell
start-up script (such asshrc, .login, or.profile)

Identifying the Provisioning Server to the CLI

If the CLI and the Provisioning Server are running on the same host, the CLI can
locate the Provisioning Server by default. If the CLI and the Provisioning Server are
remote from one another, you need to identify the location and port number of the
Provisioning Server. To do so, set the following environment variables:

CV_CLI_SERVER_HOST — Set this variable to the IP address or hostname of the
remote Provisioning Server. Specify the address in numeric format (for example,
152.148.50.2). Specify the hostname in text format (for exampt@yvserv.xyz.com).

If you do not set this variable, the CLI uses the local host by default.

CV_CLI_SERVER_PORT — Set this variable to the port number of the remote
Provisioning Server. If you do not set this variable, the CLI uses port 4001 by default.

Specifying Modification Type

You can specify whether updates are made to the network components and the
database, or to the database only. Set the following environment variable:

CV_CLI_MOD_TYPE — Set this variable to the number that represents the update
method, as follows:

1 — Sends updates to both the network component and the database. If the
network component updates successfully, the database is updated.

4 — Sends updates to the database only.

5 — Sends updates to the database only and sets a flag in the database indicating
that the object is out of synchronization with the network component.

2-12

NavisXtend Provisioning Server User’s Guide



Installation and Administration
Setting Environment Variables

If you do not set this variable, the CLI sends updates to both the network component
and the database by default.

Specifying Retry Behavior

You can specify retry behavior in the event of afailed attempt to add, delete, or
modify acircuit.

By default, when the Provisioning Server receives arequest to add, delete, or modify a
circuit, the server obtains card status for both circuit endpoints:

< If both cards are up, the Provisioning Server performs the add, delete, or modify
request as normal.

» If either card is down or is not reachable (for example, because of an SNMP
timeout), the server retries the request for card status as many times as specified
by the retry control (in the range of 0 to 5 times):

— If the card becomes reachable and is up, the Provisioning Server performs the
circuit provisioning request.

— Once all retries have been issued, if the card is still not reachable or is still
down, the provisioning request is not performed.

This control prevents circuits from being partially provisioned and the database from
becoming out of sync with the switch. Howeuviecan increase the time it takes to
provision a circuit, depending on how many card status checks occu

To specify the retry control, set the following environment variable:

CV_CLI_NUM_RETRIES — Set this variable to the number of retries (from O - 5)

for requests of card status to precede circuit provisioning requests. The value applies
to requests at either endpoint: when a retry is sent to obtain the card status of one
endpoint, the number of retries decrements for either endpoint.

If you do not set this variable, or you set it out of range, the CLI does not retry the
request for card status.

Keep in mind that this controffacts the retry behavior of circuit provisioning

requests onl Other retry controls specified in cascadenidg
(CV_SNMP_MAX_RETRIES, CV_SNMP_RERY_INTERVAL, and
CV_SNMP_REQUEST_TIMEOUT) also apply to each request. Remember to
consider these other retry controls when specifying retry behavior of a circuit request.

If you do not want the Provisioning Server to obtain card status prior to provisioning
circuits, you can override the ser\edefault behavio Set the server environment
variable CV_CARD_S3ATS to DISABLE to disable card status checking on circuit
endpoints. For details, séBisabling Card Status Checking” on g2y 20.

NavisXtend Provisioning Server User’'s Guide 2-13



Installation and Administration
Setting Environment Variables

Specifying Security Settings

By default, the Provisioning Server accepts requests from the CLI without requiring
authorization. You can implement a security feature that authenticates user logins.
Thefeatureisintended to prevent usersfrom accidentally modifying the database; it is
not intended to prevent intentional misuse by users. To implement the security feature,
you must specify environment variables for both the CLI and the Provisioning Server.
To do so for the CLI, set the following environment variables:

CV_CLI_USE LOGINS — Set this variable to any value (including a null value) to
turn on the security feature. If you do not set this variable, the Provisioning Server
accepts requests from the CLI without requiring authorization. If you set this variable,
you must also set the following variables:

CV_CLI_USERNAME — Set this variable to the username character string required
by NavisCore (for example, operator).

CV_CLI_PASSWORD — Set this variable to the password character string required
by NavisCore.

The username and password character strings are sent over the network as
nonencrypted text.

To fully implement the security feature, you must also specify security settings on the
server side. For instructions, séeplementing the Security Feature” on pa21

Controlling SNMP Parameters

You can specify how certain SNMP parameters are contrdibedo so, set the
following environment variables:

CV_SNMP_REQUEST_TIMEOUT — Set this variable to the amount of time (in
0.01 second increments) that the CLI waits for a response from the seyoe do
not set this variable, the CLI uses the value 256 by default.

CV_SNMP_MAX_RETRIES — Set this variable to the number of times that the
CLlI retries a request that times out. If you do not set this variable, the CLI uses the
value 0 by default.

Configuring the Provisioning Client

There are several environment variables you can set to configure the Provisioning
client. Specificaly, environment variables perform the following functions:

+ Enable a client trace file

e Control certain SNMP parameters

2-14 NavisXtend Provisioning Server User’s Guide



Installation and Administration
Setting Environment Variables

The best way to set the environment variables is to add them to the user’s shell
start-up script (such asshrc, .login, or.profile).

Enabling a Client Trace File

You can specify that the client create a trace file. Such a file can be useful for
debugging your Provisioning client. It is recommended that you enable the trace file
until the Provisioning Server and your Provisioning client are running in a production
environment. To enable a client trace file, set the following environment variable:

CV_CLIENT_TRACE_FILE — Set this variable to the pathname of the file to
contain the trace output (for example, /tmp/ctrace.log). If you do not set this variable,
no trace file is created.

Once you enable a client trace file, each session of the client is recorded in the file.
Output is continuously appended to the file. If you are not debugging your
Provisioning client, it is recommended that you periodically delete the file.

Controlling SNMP Parameters

You can specify how certain SNMP parameters are controlled. To do so, set the
following environment variables:

CV_SNMP_REQUEST_TIMEOUT — Set this variable to the amount of time (in
0.01 second increments) that the client waits for a response from the server. If you do
not set this variable, the client uses the value 256 by default.

CV_SNMP_MAX_ RETRIES — Set this variable to the number of times that the

client retries a request that times out. If you do not set this variable, the client uses the
value 0 by default. For non-MIB clients, you can set this variable to any value. For
MIB clients, you can set this variable to any value only if you set the variable
CV_SNMP_DISCARD_RETRY to 1.

Configuring the Provisioning Server

There are several environment variables you can set to configure the Provisioning
Server. Specifically, environment variables perform the following functions:

e Specify the server’s local port and the MIB agent’s port

Specify the server’s core file location
* Enable server trace files

e Control certain SNMP parameters

» Control ListContained context timeout

« Control MIB cache

NavisXtend Provisioning Server User’'s Guide 2-15



Installation and Administration
Setting Environment Variables

» Control object locking

» Disable card status checking when provisioning circuits
e Specify SNMP community strings

e Specify how the server formats SMDS addresses

e Implement security feature

The Provisioning Server reads its configuration settings from two files also used by
NavisCore. These shared configuration files are as follows:

« Jopt/ProvServ/etc/cvdb.cfg
« Jopt/ProvServ/etc/cascadeview.cfg

Rather than modifying Provisioning Server’s environment variables directly in these
files (which would also affect NavisCore), you can enable them in the server’s start-up
script (/opt/ProvServ/bin/start-server.sh). Look for the invocatiavdii.cfg and
cascadeview.cfg in start-server.sh and make the necessary modifications after that
point in the file.

Identifying the Provisioning Server Port

The Provisioning Server uses a command line argument to identify which port to
listen for APl and CLI requests. To specify this command line argument, set the
following environment variable istart-server.sh:

CV_PSRV_ARGS — Set this variable to the commadhgdort and the port number.
Enclose the command in quotation marks, for example:

“-Iport 4002”

If you do not set this variable, the Provisioning Server uses port 4001 by default.

Identifying the MIB Agent Port

The Provisioning Server implements an SNMP agent as a separate entity to service
MIB interface requests. The server uses an environment variable to identify which
port to listen for SNMP requests. This port is different from the port number used to
listen for APl and CLI requests.

To specify this MIB agent port, set the following environment variablein
start-server.sh:

CV_SNMP_AGENT_PORT — Set this variable to the port number. If you do not
set this variable, the Provisioning Server uses port 9090 by default.

2-16 NavisXtend Provisioning Server User’s Guide



Installation and Administration
Setting Environment Variables

Specifying the Core File Location

If the Provisioning Server crashes, it creates a core file. Such afile can be useful for
debugging the server. The core file is written to the Provisioning Server’s working
directory (/tmp by default). You can specify the directory where the Provisioning
Server runs and where it writes any core files. You may want to specify a directory
other than the default if /tmp gets deleted frequently and you want to ensure a valid
core file. To specify a working directory, set the following environment variable in
start-server.sh:

CV_WORKING_DIR — Set this variable to the pathname of the directory. If you do
not set this variable, the Provisioning Server writes its core file to the /tmp directory
by default.

Enabling Server Trace Files

By default, the Provisioning Server creates three trace files, two of which are enabled
by environment variables specified in the configurationcilscadeview.cfg. Rather

than turning these trace files on or off directl#@scadeview.cfg (which would also

affect NavisCore), you can enable them in the server’s start-up script
(/opt/ProvServ/bin/start-server.sh). Look for the invocatiotastadeview.cfg in
start-server.sh and make the necessary modifications after that point in the file.

These files can be useful for troubleshooting and diagnosing problems. It is
recommended that you enable the trace files until the Provisioning Server is running
in a production environment. To enable the trace files, set the following environment
variables:

CV_TRACE_ENABLE — Set this variable to 1 to enable the application-level trace
output for the server. If you set this variable, you must also s€\Mth@ RACEFILE
variable.

CV_TRACEFILE — Set this variable to the pathname of the file to contain the
application-level trace output for the server. To avoid conflicts with the NavisCore
trace file, the suffixpsrv will be appended to the filename you specify. By default,
this trace file is written to the /tmp directory.

CVDB_TRACE_FILE_NAME — Set this variable to the pathname of the file to
contain the database trace output for the server. To avoid conflicts with the NavisCore
trace file, the suffixpsrv will be appended to the filename you specify. By default,

this trace file is written to the /tmp directory.

CV_PSRV_TRACE_FILE — Set this variable to the pathname of the file to contain
trace output specific to the Provisioning Server. By default, this trace file is written to
the /tmp directory and is calletrace.log.

Once you enable a trace file, specific activity is recorded in the file. Output is
continuously appended to the file. It is recommended that you periodically delete the
trace files.

NavisXtend Provisioning Server User’'s Guide 2-17



Installation and Administration
Setting Environment Variables

If you are troubleshooting a problem, it can be useful to know what kinds of
transactions occur between the Provisioning Server and the Provisioning client. For
this reason, you should enable the client trace file as well. For instructions, see
“Enabling a ClienfTrace File” on pag2-15

Controlling SNMP Parameters

You can specify how certain SNMP parameters are contrdltedo so, set the
following environment variables istart-server.sh:

CV_SNMP_REQUEST_TIMEOUT — Set this variable to the amount of time (in
0.01 second increments) that the server waits for a response from the switch. If you do
not set this variable, the server uses the value 256 by default.

CV_SNMP_MAX_RETRIES — Set this variable to the number of times that the
server retries a request that times out. If you do not set this variable, the server uses the
value 5 by default. It is recommended that you keep this setting as the default.

CV_SNMP_DISCARD_RETRY — Set this variable to 1 to enable the server to

discard multiple SNMP request retries from a MIB client. If you set this variable to 1,
the server checks the Request ID, the IP address, and the port number of every SNMP
request. If these values match those of a request that the server is currently processing,
the server ignores the retry request. If you do not set this variable, the server uses the
value 1 by default. It is recommended that you keep this setting as the default, unless
your SNMP client generates SNMP PDUs without unigue Request IDs or port
numbers.

Controlling Context Timeout

The Provisioning Server maintains context for outstanding ListContained requests.
The server allows 500 ListContained requests to be outstanding. Any ListContained
request for which a NextObject request has not been issued within a configurable time
period is subject to deletion to make room for a new ListContained request to be
processedTlo configure this time period, set the following environment variable in
start-server.sh:

CV_PSRV_CONTEXT_TIMEOUT — Set this variable to the amount of time (in
minutes) that the server waits for a response to a ListContained request. Any request
for which a NextObject request has not been issued in that time period is subject to
deletion. If you do not set this variable, the server uses the value 10 by default. It is
recommended that you keep this setting as the default.

2-18 NavisXtend Provisioning Server User’s Guide



Installation and Administration
Setting Environment Variables

Controlling MIB Cache

The Provisioning Server implements aMIB cache that stores datain memory for a
fixed time period. The server uses this cache to optimize performance of get-next
reguests and to store data to be committed to the database during transactions
involving multiple PDUs. Each table row stored in cache has a timestamp. The server
uses an environment variable to purge older data by row.

To configure this purge time period, set the following environment variablesin
start-server.sh:

CV_SNMP_ROWENTRY_TIMEOUT — Set this variable to the amount of time

(in seconds) that the server stores a particular row of data in cache dgetrgesat

request. Based on this variable, the server flushes out entries in MIB cache that result
from aget-next operation. Thus, the server uses this variable to optimize performance
of get-next requests. The minimum value of this variable is 60, the maximum value is
1800. These values apply, even if you set a value lower than the minimum or greater
than the maximum. If you do not set this variable, the server uses the timeout value
900 by default.

CV_SNMP_CMDERROR_CACHE_TIMEOUT — Set this variable to the amount

of time (in seconds) that the server stores Command Error Table messages in cache.
The Command Error Table contains error messages generated by the SNMP agent.
Any error message older than this timeout value is subject to deletion. If you do not set
this variable, the server uses the timeout value 3600 by default. To save all errors
generated during creation and modification transactions, set this variable to a value
greater than the value of the CV_SNMP_LOCK_TIMEOUT variable.

Controlling Object Locking

The Provisioning Server uses an object locking scheme for MIB objects in the
database that differs from the locking behavior of the Provisioning Server API, CLI,

or NavisCore. For these interfaces, the steps associated with locking are transparent to
the user. When an object is created or modified, its parent object becomes locked. The
user specifies all the information needed to create or modify the object in one PDU.
Once the request completes, the parent becomes unlocked.

By contrast, in the case of the MIB, the information needed to create or modify an
object may not be available in one PDU. As a result, the locks in the database must be
held for a longer time. Thus, the steps associated with locking are not transparent to
the user.

If the user initiates a transaction to create an object, the parent object becomes locked,
preventing other users from modifying it. If the user initiates a transaction to modify

an object, the object itself becomes locked, preventing other users from modifying it.
To configure the time period that objects are locked, set the following environment
variable instart-server.sh:

NavisXtend Provisioning Server User’'s Guide 2-19



Installation and Administration
Setting Environment Variables

CV_SNMP_LOCK_TIMEOUT — Set this variable to the amount of time (in
seconds) that the server:

« Locks a parent object when a child object is being created
e Locks an object that is being modified

The maximum value of this variable is 1800. This maximum value applies, even if
you set a greater value. If you do not set this variable, the server uses the timeout value
900 by default.

Disabling Card Status Checking

The Provisioning Server uses a retry control to ensure reliability and accuracy of
circuit provisioning. This control specifies retry behavior in the event of a failed
attempt to add, delete, or modify a circuit.

By default, when the Provisioning Server receives a request to add, delete, or modify a
circuit, the server obtains card status for both circuit endpoints before it performs the
provisioning request.

If you do not want the Provisioning Server to obtain card status prior to provisioning
circuits, you can override the server’s default behavior. Set the following environment
variable instart-server.sh:

CV_CARD_STATS — Set this variable to DISABLE to disable card status checking
on circuit endpoints.

Specifying Community Strings

The Provisioning Server supports two community names, one for Read-Only
operations and one for Read-Write operations. The community name provides a
mechanism for authentication and access-control at the SNMP agent.

The community strings are defined using the following environment variables in
start-server.sh:

CV_READONLY_COMMUNITY_STRING — Set this variable to the community
string to be used when making a Read-Only SNMP request. If you do not set this
variable, the server uses the value ‘public’ by default.

CV_READWRITE_COMMUNITY_STRING — Set this variable to the
community string to be used when making a Read-Write SNMP request. If you do not
set this variable, the server uses the value ‘ascend’ by default.

If these environment variables are defined in the sstipt-server.sh, the specified
strings take precedence. If they are not set in the script or if the server shell
environment does not define the variables, the server assumes the default values.

2-20 NavisXtend Provisioning Server User’s Guide



Installation and Administration
Setting Environment Variables

If the community name is not valid when you issue an snmp_set request, the request
exceeds the time-out period and fails. You can access the Command Error Table in the
MIB to seeif the source of the problem is an invalid community name. Specify the
Read-Only community name when you access the table, as that community nameis
used for validation purposes.

When you make an snmp_get request, specify either the Read-Only or the Read-Write
community name. If you use adifferent community name and you encounter an error,
the error is not propagated to the Command Error Table.

Controlling SMDS Addresses

You can specify how the Provisioning Server formats SMDS addresses. To do so, set
the following environment variables in start-server.sh:

CV_DFLT_SMDS CC — Set this variable to specify the default country code for
SMDS addresses. The server will prepend this default country code to a given address
that does not specify the country code. When using multiple country codes, you must
specify the country code for addresses that do not use the default code. You have to
create a country code before you can specify it as a default.

CV_DFLT_CC_PRT_ENABLE — Set this variable to control the format of

individual addresses in responses to List operations. When this variable is set to 1, the
default country code part of an address is returned in the List response. For other
operations (AddObject, DeleteObject, Get, Modify), the server returns the address in
the same format used by the client.

CV_SMDS MASK_SIZE — Set this variable to specify the character length of the
address prefix in SMDS addresses. The server interprets characters preceding a dash
(-) as the country code part of the address, themelaracters (specified by this
variable) as the prefix part of the address, and the remainder as the address part. For
example, if this variable is set to 6, the server interprets the address 1-9789521111 as
follows:

1-|978952”1111|

Country Code Prefix Address

Implementing the Security Feature

By default, the Provisioning Server accepts requests from Provisioning client and CLI
users without requiring authorization. You can implement a security feature that
authenticates user logins. The feature is intended to prevent users from accidentally
modifying the database; it imt intended to prevent intentional misuse by users. To
implement the security feature, you must specify environment variables for both the
CLI and the Provisioning Server. To do so for the server, set the following
environment variable istart-server.sh:

NavisXtend Provisioning Server User’'s Guide 2-21



Installation and Administration
Stopping and Restarting the Provisioning Server

CV_PSRV_USE_L OGINS — Set this variable to any value (including a null value)
to turn on the security feature. If you do not set this variable, the Provisioning Server
accepts requests from clients without requiring user authorization.

Once you set this variable, any clients sending requests to the server must send a user
ID and password for authorization. For a Provisioning client, this is accomplished

when the client establishes the session with the ProvisioningrSeovehe CLI, the

security settings are specified through environment variables. For instructions, see
“Specifying Security Settings” on pag-14.

Stopping and Restarting the Provisioning Server

To stop and restart the Provisioning Server running on a workstation:

1. On the host that runs the semMeg on as the root user and enter the root
password.

2. Determine the process ID of the Provisioning Semsing the following
command:

/bin/ps -ef | grep provserv <Return>
The process ID is the second item in the resulting listing.

3. Kill the current server process, using the following command:

kill [server process id] <Return>

Once the server process is killed, the init program restarts the.serve

Stopping and Restarting the CLI

To quit the CLI, press <Ctrl-CHo restart the CLlI, issue a CLI command.

Troubleshooting Problems

This section describes how to troubleshoot problems with the Provisioning, $leeve
provisioning application, and the CLI.

2-22 NavisXtend Provisioning Server User’s Guide



Installation and Administration
Troubleshooting Problems

Problem: Requests Frequently Time Out

Symptoms
Either:
» CLI prints an error message

* API-based application receives an error status
Possible Causes and Solutions

Scenario 1: Error message 4109 (“Request to the server timed out”)

* The Provisioning Server may not be running or accessible to the client
workstation.Verify that the client can access the server and that the Provisioning
Server is runninglo do so, follow the procedure ‘ifiesting the CLI” on

page 2-9.

e The clients timeout value may be toowoThe client timeout value should allow
for instances when the server times out and later retries a command to the switch.
Since the servés second request may be successful, the client should not timeout
while waiting for the servés response. Adjust the client timeout value by setting
the client CV_SNMP_REQUEST_TIMEOUT environment variable. Start with
the value 3000. If that value does not correct the problem, use the following
formula to determine a “worst case” client timeout value:

CV_SNMP_REQUEST_TIMEOUE CV_SNMP_REQUEST _TIMEOUT *
CV_S\MP_MAX_RETRIES+n

whereCV_SNMP_REQUEST_TIMEOUT is the timeout value for the serye
CV_S\NMP_MAX_RETRIES s the retry value for the server amés a factor that
allows for client-server round-trip. Start with a value of 300. The result
(CV_SNMP_REQUEST_TIMEOUT) is the timeout value to set for the client.

For details on values to use for these environment variables for the client amd serve
see"Setting EnvironmenYariables” on pag?2-11.

Scenatrio 2: Error message 42 (“The SNMP request to the agent timed
out”):

The Provisioning Server may take along time to process a request because it cannot
locate the network device specified in the request (such as a switch):

« If the request is intended to modify the switch, verify that the switch is accessible
from the serve To do so, remotely log into the Provisioning Server and issue the
ping utility to elicit a response from the switch.

NavisXtend Provisioning Server User’'s Guide 2-23



Installation and Administration
Troubleshooting Problems

« If the request is intended to update the databaseretly the request with the
modification type set to update the databasg. ¢idr a CLI request, set the
CV_CLI_MOD_TYPE environment variable to 4 or 5 (§€enfiguring the CLI”
on pa@ 2-12) For an API request, issue either the C funcGefetM odifyType
or the C++ member functic@vClient::setM odifyType, specifying that updates
be made to the databaseyonl

Problem: Object Is Locked by Others

Symptoms
Either:
* CLI prints an error message

* API-based application receives an error status

Possible Causes and Solutions

Either a NavisCore user has the object locked or the object appears to be locked when
the client retries a reque3b determine if the object is locked, change directories to
/opt/Cascadéiew/bin and execute thev-release-locks.sh shell script. The script

lists the objects that are currently locked and who has them locked.

<

> Do not use the cv-release-lock.sh script to release the locks. If you need t
release locks, call the Ascemdchnical Assistance Cente

Scenario 1: Object Is Locked by NavisCore User

If the cv-release-locks.sh shell script indicates that a NavisCore user has the object
locked, either:

« Wait for the user to finish (or request that he or she finish) using the object.

+ Call the Ascendechnical Assistance Cente

Scenario 2: Object Appears to Be Locked During Retries

If the cv-release-locks.sh shell script does not indicate that the object is locked, a
client timeout may have occurred while the server was still processing the request.
Then, when the client automatically retried the request, the object appeared to be
locked.

2-24 NavisXtend Provisioning Server User’s Guide



Installation and Administration
Troubleshooting Problems

Adjust one of the following environment variables:

« Adjust the client timeout value by setting the client
CV_SNMP_REQUEST_TIMEOUT environment variable to a higher valae.
do so, follow the procedure f®cenario 1: Error message 4109 (“Request to the
server timed out”)” on pagR2-23

» Adjust the client retry value by setting the CV_SNMP_MAX_RETRIES to 0. For
details on this environment variable for the client,“Sssting Environment
Variables” on pag?2-11.

Technical Support

The Ascendlechnical Assistance CentdAC) is available to assist you with any
problems encountered while using the NavisXtend Provisioning Server préduct.
contact the Ascend@dAC, call 1-800-DIALWAN.

Information Checklist

Before contacting the Asce@\C, review the following checklist to make sure you
have gathered all the information you need:

Software Version Number

Use the UNIX utility pkginfo to obtain information such as version number and install
date for the NavisXtend Provisioning Server package:

pkgi nfo -1 NAVI Seps
Note the version number listed in the output.

Problem Report
Collect as much information as possible about the problem:

e For CLI problems, describe what commands caused the problem, what commands
preceded the problem, and how did the Provisioning Server respond (such as what
error message was returned). If possible, provide the exact text for the commands.

» For API problems, provide the source code that caused the prdbieto.
condense the problem to a few lines.

* You can use the API to create a CLI command that recreates the problem. This
alternative provides an easy way to recreate a problem without having to provide
code. The following code sample illustrates how to use the API to create a CLI
command:

NavisXtend Provisioning Server User’'s Guide 2-25



Installation and Administration
Troubleshooting Problems

char *argString = CvArgsToString( args );

char *obj String = CvObjectldToString( objid );
printf( “cvadd %s %s", objString, argString );

CvStringFree( argString );

CvStringFree( objString );

Trace Files
Collect any trace files that may exist:

» Server trace files, which you enable using environment variables. By default,
these trace files are not produced. The easiest way to turn them on is to edit the
start-server.sh script. They are usually written to the /tmp directory with the
filenamesstrace.log or the file sffix .psrv.

» Client trace files, which you enable using environment variables. By default, these
trace files are not produced. The easiest way to turn them on is to editrise use
.cshrc file and adding the following line:

setenv CV_CLIENT_TRACE_FILE /tnp/ctrace. | og

This command writes the client trace fileace.log to the /tmp director

If the resulting trace files are toadge, collect the last 5000 lines of each file. If
necessar, compress the files using the GZIP program. If you send the compressed
files to Ascend by email, UUENCODE the files, if necegsar

For more information on how to enable trace logs,'8eebling Serveilrace Files”
on pa@ 2-17and“Enabling a ClienfTrace File” on pag2-15.

Core Files

If the Provisioning Server crashes, it creates a core file. Collect the core file from the
Provisioning Serves working directoy, which is either /tmp by default or another
directory you specify using an environment variable. For information on how specify
the working directoy, see*Specifying the Core File Location” on pag-17.

2-26 NavisXtend Provisioning Server User’s Guide



Installation and Administration
Writing a Provisioning Application

Un-installation Instructions
If you decide you want to un-install the current version of the Provisioning Server and
Application Toolkit, use the pkgrm utility:
1. Toun-install the Provisioning Server components using pkgrm, enter:
pkgr m NAVI Seps
The utility prompts you to verify the un-install:

The follow ng package is currently installed:
1 NAVI Seps Navi sXtend Provi sioning Server
(sparc) [version #

Do you want to renove this package?

2. Toun-install the NavisXtend Provisioning Server package, enter y.
The un-installation utility displays the message:
## Removing install ed package instance <NAVI Seps>

Thi s package contains scripts which will be executed with
super-user permni ssion during the process of renoving this package.

Do you want to continue with the renoval of this package [y,n,?, q]
3. Entery to continue.

Theun-installation utility performs various verification functions and displays the
confirmation message:

Are you sure you want to UNI NSTALL the Provisioning Server [y/n]?
4. Entery to continue.

The utility completes the un-installation:

Un-install conplete

Renmoval of <NAVI Seps> was successful .

The un-installation of the Provisioning Server componentsis complete.

Writing a Provisioning Application

To write a Provisioning application, perform the following steps:

1. Install the Provisioning Server Applicatidioolkit, as described itinstallation
Instructions” on pag2-3.

2. Set the environment variables that control SNMP parameters for the Provisioning
client. For instructions, seé€onfiguring the Provisioning Client” on pe@-14.

NavisXtend Provisioning Server User’'s Guide 2-27



Installation and Administration
Writing a Provisioning Application

3. Add thefollowing entriesto your makefile:
-1/ opt/ProvServ/incl ude
-L/opt/ProvServ/lib -1Cient
Thefirst lineisfor al compilations; the second lineisfor the link step.
Write the program.
Compile the program.

Upgrading an Existing Application

If you have a Provisioning application that was built with a previous version of the
Provision Server Application Toolkit and you want to use the new features of the
Provisioning Server API, you need to make the necessary code changes for the new
functions and attributes, and recompile and relink your program with the new API.

If you do not want to use the new features of the Provisioning Server API, no code
changes are necessary. You need only to recompile and relink your program with the
current version of the API include files and libraries.

2-28 NavisXtend Provisioning Server User’s Guide



Using the CLI

This chapter describes how to use the Command Line Interface (CLI) to build a
provisioning script instead of a C or C++ program.

To understand the Provisioning Server object hierarchy, first read Chapter 1.

Using the CLI

The Application Toolkit providesa Command Line Interface (CLI) for usersto build a
provisioning script instead of a C or C++ program. The CLI isaset of command-line
programs that you can issue from any UNIX shell to provision network objectsin
interactive or batch mode.

Thereisa CLI command for each operational function of the API. Each command
uses a string representation to specify objects and attributes.

cvadd (Object ID, Attributes) — Creates an object in the database and (optionally) in
the switch.

cvaddmember (Object ID, Object ID) — Adds a member to an object list.

cvCreateChanPerformanceM onitorld (Object ID, Channel ID) — Creates a
CVT_ChanPerformanceMonitor object.

cvmodify (Object ID, Attributes) — Modifies specific attributes of an object.

cvdelete (Object ID) — Deletes an object from the database and (optionally) from the
switch.

cvdeletemember (Object ID, Object ID) — Deletes a member from an object list.
cvget (Object ID, Attributes) — Retrieves specific attribute values from the database.

cvgetdiag (Object ID, Attributes) — Retrieves specific diagnostic information from
the Provisioning Server.

NavisXtend Provisioning Server User’'s Guide 3-1



Using the CLI
Using the CLI

cvgetoperinfo (Object ID, Attributes) — Retrieves the values of specific real time
operational information from the switch.

cvlistcontained (Object ID, type, Attributes) — Retrieves a list of configuration
attributes for objects of the given type contained by the specified parent.

cvlistallcontained (Object ID, Attributes) — Retrieves a list of configuration
attributes for all objects contained by the specified parent.

cvstartdiag (Object ID, Attributes) — Starts diagnostics on an object in the network.
cvstopdiag (Object ID, Attributes) — Stops diagnostics on an object in the network.

cvupdatediag (Object ID, Attributes) — Modifies diagnostic parameters on the
switch for an object being diagnosed on the network.

The commands are supported for mogjetobject types, with a few restrictions. For
example, you cannot specify a switch when you issue an Add or Delete command, as
the Provisioning Server does not support adding or deleting switches.

Thecvhelp command provides usage help for the CLI.

For a list of the object types you can use when you issue the operational functions of
the CLI, se€lable 1-4 on pag 1-39.

There are several environment variables you can use to configure the behavior of the
CLI. For details, se&etting EnvironmenVariables” on pag?2-11.

CLI Usage Overview

Most of the CLI commands use the following syntax:

command object-name { -attribute-name val ue}

Syntax
command The name of the command. If the command isin your path,
you can enter just the command name, such as cvadd,
cvdelete, cdmodify, cvget, cvaddmember, or
cvdeletemember. Otherwise, you must prefix the command
name with the path /opt/ProvServ/bin/.
object-name The object ID. To specify an abject ID, you first specify the

objects parent (if any), including the parent type and value.
Then, you specify the child type and value. For rules on
specifying object IDs for various types of objects, see
“Managed Objects” on padl-12.

32

NavisXtend Provisioning Server User’s Guide



Using the CLI
Using the CLI

-attribute-name The attribute ID appropriate to the object I1D. Specify the
attribute name preceded by adash ( - ). Use the attribute
ID symbols listed in the NavisXtend Provisioning Server
Object Attribute Definitions, but omit the
CVA_ObjectType prefix. For example, specify location
as: - Locati on.

value The value of the attribute ID. The value requires a data
type appropriate for the argument, such as integer, string,
and so on. For data types, use the data types listed in the
NavisXtend Provisioning Server Object Attribute
Definitions. Note the following rules for values:

« For integers, specify the integer value.

» For strings, enclose the string within /” characters if it
contains special characters, such as a period or a blank
characte String values cannot begin with a hyphen.

« For enumerated types, specify the text value that
represents the integer value. In most cases, the CLI uses
an abbreviated text value.

« For Object ID, specify the Object ID that identifies the
object in the containment hierarchy (s&tanaged
Objects” on pag1-12).

-attribute-name and value are optional parameters.

Before the CLI issues a command to the Provisioning Server, it checks the command
for correct syntax. The server checks the input parameters for validity and reports
errors back to the client.

To maximize CL1 efficiency, do not set all possible attributesin arequest. Specify
only attributes that are mandatory.

In some cases, a CLI command line may become too long for the shell to handle. This
can happen most often when adding L Ports. The restriction is most likely to happen
when using the sh or csh shells. It occurs only in certain circumstances when using
ksh. To work around this buffer restriction, separate the CLI command into multiple
lines. At the end of each line, insert the backslash character (\) immediately followed
by the <Ret ur n> key. Thisinstructs the shell that the next lineis part of the same
command.

For example:
cvadd switch.1.1.1.1.card.9.pport.1.Iport.2 \<Return>
-serviceType smds -smdsType SsiDte \<Return>

-bandwidth 64000

NavisXtend Provisioning Server User’'s Guide 3-3



Using the CLI
Using the CLI

The sections that follow present the CLI commands in alphabetical order. Usage
examples are provided with each command. Use these examples as guidelines for
syntax and usage. The exact attributes required by a particular command vary,
depending on the type of LPort and Card specified. For additional examplé&s| see
Examples” on pag3-30.

NavisXtend Provisioning Server User’s Guide



Using the CLI
cvadd

cvadd

Purpose

Creates an object in the database and (optionally) in the switch. The attributes
specified by the command are used to initialize the object.

Command Syntax

cvadd object-name { -attribute-name value} . ..

Parameters

object-name specifies the object to be added. The object is specified by its object ID,
based on the containment hierarchy (for information, Semaged Objects” on
page 1-12)

-attribute-name value specifies an attribute and its value to be added to the object.
The attribute is specified by itsgument name. The value uses a data type
appropriate for thergument.

Specify only those attributes and values appropriate for the objectftgpecan
specify any attribute except one with either the Read-Only access restriction.

Notes

For a list of object types that you can add with this commasediase 1-4 on
page 1-39

To create a card or PPort, use the Modify comn{anahodify). The NavisCore

database automatically populates each switch with cards of type “empty”. Use the
Modify command to change the cadype from “empty” to the specified type.

Likewise, once a card has been configured, NavisCore automatically populates the
card with all necessary Physical Ports. Use the Modify command to change the PPort
specifications. In the case of the channelized DS3 card, once the card has been
configured, NavisCore automatically populates the card with all necessary channels.
Use the Modify command to change the channel specifications.

If cvadd is successful, it prints the command name followed byrthengents that the
Provisioning Server return¥ou can use this output to verify that thrguanents are

the same as those specified in the original request. Any attribute that is missing a valid
value is a required attribute that you omitted.

NavisXtend Provisioning Server User’'s Guide 3-5



Using the CLI
cvadd

Examples
The following cvadd command creates an L Port:
[ opt/ ProvSer v/ bin/cvadd
Switch.1.1.1.2.card. 4.pport.3.lport.1 -Nane | portl - SndsType SsiDte
- Servi ceType Snds -Bandw dth 64000 - ErrorPerM nThreshold 0
-Adm nStatus Up -ErrorCheckFlag O f -HeartBPFlag On
- SndsPduVi ol TcaFl ag Di sable -HeartBPInterval 1 -HeartBPNAThresh 1
If successful, the command returns the following text:
/opt/ProvServ/bin/cvadd Switch.1.1.1.2.card. 4.pport.3.lport.1
-Name | portil -SndsType SsiDte -ServiceType Snds -Bandwi dth
64000 -ErrorPerM nThreshold 0 -Adm nStatus Up -ErrorCheckFl ag
Of -HeartBPFlag On -SmdsPduVi ol TcaFl ag Di sabl e - Heart BPI nt erval
1 -HeartBPNAThresh 1
The following cvadd command creates a circuit connecting a Frame Relay LPort to a
PPPt01490 L Port:
[ opt/ ProvSer v/ bin/ cvadd
-Name circuitl Switch.1.1.1.1.card.5.pport.5.1port.5.dlci.22
-Endpoint2 Switch.1.1.1.2.card.5.pport.5. 1 port.5.dlci.23
-Gaceful Discard Enabled -Adm nStatus Up -Priority Low
- Rer out eBal ance Di sabl ed
In this example:
* The first endpoint (Switch.1.1.1.1.card.5.pport.5.lport.5) is a Frame Relay LPort.
* The second endpoint (Switch.1.1.1.2.card.5.pport.5.lport.5) is a PPPto1490 LPort.
3-6

NavisXtend Provisioning Server User’s Guide



Using the CLI
cvaddmember

cvaddmember

Purpose

Adds amember to an object list. Use this command to add an address to a screen or
netwide group address or to add an MLFRMember LPort to aMLFRBundle L Port.
Upon completion of the command, the address or L Port represented by the second
object parameter is added to the object specified by the first object parameter.

Command Syntax

Parameters

Notes

cvaddmember object-name object-name

object-name specifies the objects. Each object is specified by its object ID, based on
the containment hierarchy (for information, sk&naged Objects” on padlL-12).
The firstobject-name specifies the container object.

For a list of object types that you can add with this commaediage 1-4 on
page 1-39.

When you specify the object CVT_SmdsGroupScreen as the container object, the
member to be added must be either a CVT_SmdsAlienGroupAddress or a
CVT_SmdsSwitchGroupAddress.

When you specify the object CVT_SmdsindividualScreen as the container object, the
member to be added must be either a CVT_SmdsLocallndividualAddress or a
CVT_SmdsAlienindividualAddress.

When you specify the object CVT_SmdsNetwideGroupAddress as the container
object, the member to be added must be a CVT_SmdsLocallndividualAddress.

When you specify the object CVT_LPort as the container object, the container must
be an MLFRBundle LPort and the member to be added must be an MLFRMember
LPort.

If cvaddmember is successful, it prints the command name followed by the
arguments that the Provisioning Server retulfmi can use this output to verify that
the aguments are the same as those specified in the original request.

NavisXtend Provisioning Server User’'s Guide 3-7



Using the CLI

cvaddmember
Example
Thefollowing cvaddmember command adds an SMDS local individual addressto an
SMDS netwide group address:
[ opt/ ProvSer v/ bi n/ cvaddnenber
Net work. 1. 1. 1. 0. Net wi deGr oupAddr ess. 1234567899
Switch.1.1.1.1. card. 3. pport. 4.l port. 1. Local I ndivi dual Address. 12345
67890
If successful, the command returns the following text:
[ opt/ ProvServ/cvaddnenmber Network.1.1.1.0.Netw deG oup
Addr ess. 123456789 9 Switch.1.1.1.1.card. 3. pport.4.lport. 1.
Local I ndi vi dual Addr ess. 1234567890
3-8

NavisXtend Provisioning Server User’s Guide



Using the CLI
cvCreateChanPerformanceMonitorld

cvCreateChanPerformanceMonitorld

Purpose

Creates a CVT_ChanPerformanceMonitor object.

Command Syntax

cvCreateChanPer for manceM onitor | d object-name channelID

Parameters

object-name specifies the object to be created. The object is specified by itsobject ID,
based on the containment hierarchy (for information; Begaged Objects” m

).

channelID is theCvObjectld structure that specifies the channel that contains the
DS1 channel PM Threshold object. This structure is byilE¥CreateChannell d.

Notes

Example

The followingcvCreatePer for manceChannelMonitorld command creates a
CVT_ChanPerformanceMonitor object.:

If successful, the command returns the following text:

/opt/ ProvServ/bin/cvdel ete Switch.1.1.1.1.card. 4. pport.1.lport.1.
dlici.16

NavisXtend Provisioning Server User’'s Guide 3-9



Using the CLI
cvdelete

cvdelete

Purpose

Deletes an object from the database and (optionally) from the switch.

Command Syntax

Parameters

Notes

Example

cvdelete object-name

object-name specifies the object to be deleted. The abject is specified by itsobject ID,
based on the containment hierarchy (for information, Begmaged Objects” on

page 1-12).

For a list of object types that you can delete with this commaadadde 1-4 on
page 1-39

You only need to delete an SMDS switch group address if the database shows an
SMDS switch group address that should not exist.

To remove a card, use the Modify commé#&oemaodify) to change the carmltype to
Hempty”.

Some objects cannot be deleted until the objects they contain have been deleted. For
example, you cannot delete an LPort until you delete all of its circuits and addresses.

If cvdelete is successftul, it prints the command name followed byrtnengents that
the Provisioning Server returrgou can use this output to verify that thguanents
are the same as those specified in the original request.

The followingcvdelete command deletes a circuit:

[ opt/ ProvServ/bin/cvdel ete
Switch.1.1.1.1.card. 4.pport.1l.lport.1.Dici.16

If successful, the command returns the following text:

[ opt/ ProvServ/bin/cvdel ete Switch.1.1.1.1.card. 4.pport.1.1port. 1.
dlci.16

3-10

NavisXtend Provisioning Server User’s Guide



Using the CLI
cvdeletemember

cvdeletemember

Purpose

Deletes a member from an object list. Use this command to delete an address from a
screen or netwide group address or to unbind a MLFRMember LPort from a
MLFRBundle LPort. Upon completion of the command, the address or L Port
represented by the second object parameter is removed from the object specified by
the first object parameter.

Command Syntax

Parameters

Notes

cvdeletemember object-name object-name

object-name specifies the objects. Each object is specified by its abject ID, based on
the containment hierarchy (for information, $danaged Objects” on pad.-12).
The firstaobject-name specifies the container object.

For a list of object types that you can delete with this commaadagde 1-4 on
page 1-39

When you specify the object CVT_SmdsGroupScreen as the container object, the
member to be removed must be either a CVT_SmdsAlienGroupAddress or a
CVT_SmdsSwitchGroupAddress.

When you specify the object CVT_SmdsindividualScreen as the container object, the
member to be removed must be either a CVT_SmdsLocallndividualAddress or a
CVT_SmdsAlienindividualAddress.

When you specify the object CVT_SmdsNetwideGroupAddress as the container
object, the member to be removed must be a CVT_SmdsLocallndividualAddress.

When you specify the object CVT_LPort as the container object, the container must
be an MLFRBundle LPort and the member to be removed must be an MLFRMember
LPort.

If cvdeletemember is successful, it prints the command name followed by the
arguments that the Provisioning Server retultas can use this output to verify that
the aguments are the same as those specified in the original request.

NavisXtend Provisioning Server User’'s Guide 3-11



Using the CLI
cvdeletemember

Example

The following cvdeletemember command removes an SMDS alien group address
from an SMDS group screen:

/ opt/ ProvSer v/ bi n/ cvdel et emenber
Switch.1.1.1.1. card. 3. pport.4.lport. 1. GoupScreen
Switch.1.1.1.1. Ali enG oupAddr ess. 0009998887

If successful, the command returns the following text:

/opt/ ProvServ/cvdel etenenber Switch.1.1.1.1. card. 3. pport.4.lport.1
.G oupScreen Switch.1.1.1.1. Ali enG oupAddr ess. 0009998887

312 NavisXtend Provisioning Server User’s Guide



Using the CLI
cvget

cvget

Purpose

Retrieves the values of specific attributes from the database.

Command Syntax

cvget object-name {-attribute-name} . . .

Parameters

object-name specifies the object whose attributes are to be retrieved. The object is
specified by its object 1D, based on the containment hierarchy (for information, see
“Managed Objects” on pad.-12).

-attribute-name specifies an attribute to be retrieved. The attribute is specified by
its agument name. Specify only attribute names with no vaMes.can specify
up to 40 attributes.

Specify only those attributes appropriate for the object type.

Notes

For a list of object types that you can use with this commaed,asde 1-4 on
page 1-39.

If cvget is successful, it prints the command name followed byrinanaents that the
Provisioning Server return¥ou can use this output to verify that thiguaments are
the same as those specified in the original request.

Examples

The followingcvget command retrieves the type and administrative status of a card:
[ opt/ ProvSer v/ bin/ cvget
Switch.1.1.1. 1. card. 4 -DefinedType - Adm nSt at us

If successful, the command returns the following text:

/opt/ ProvServ/bin/cvget Switch.1.1.1.1.card. 4 -DefinedType
1Por t At nDs3Uni

-Adm nStatus Up

The followingcvget command retrieves the location of a switch:
[ opt/ ProvServ/bin/cvget Switch.152.148.50.2 -Location

NavisXtend Provisioning Server User’'s Guide 3-13



Using the CLI
cvget

If successful, the command returns the following text:
[ opt/ ProvServ/bin/cvget Switch.152.148.50.2

-Location “XYZ Corporation”

314 NavisXtend Provisioning Server User’s Guide



Using the CLI
cvgetdiag

cvgetdiag

Purpose

Retrieves the values of specific diagnostic information from the Provisioning Server.

Command Syntax

Parameters

Notes

Examples

cvgetdiag object-name { -attribute-name} . ..

object-name specifies the object whose attributes are to be retrieved. The object is
specified by its object 1D, based on the containment hierarchy (for information, see
“Managed Objects” on padl-12).

-attribute-name specifies an attribute to be retrieved. The attribute is specified by
its agument name. Specify only attribute names with no values.

Specify only those attributes appropriate for the object type.

For a list of object types that you can use with this command,adde 1-4 on
pace 1-39.

If cvgetdiag is successful, it prints the command name followed byrthenzents that
the Provisioning Server returréou can use this output to verify that thguanents
are the same as those specified in the original request.

The followingcvgetdiag command retrieves LoopbackStatus diagnostic information
from the Provisioning Server:

[ opt/ ProvServ/ bin/cvgetdi ag
Switch.1.1.1.1.card. 4. pport. 1 -LoopbackSt at us

NavisXtend Provisioning Server User’'s Guide 3-15



Using the CLI
cvgetoperinfo

cvgetoperinfo

Purpose

Retrieves the values of specific real time operational information from the switch.

Command Syntax

cvgetoperinfo object-name { -attribute-name} . ..

Parameters

object-name specifies the object whose attributes are to be retrieved. The object is
specified by its object 1D, based on the containment hierarchy (for information, see
“Managed Objects” on padl-12).

-attribute-name specifies an attribute to be retrieved. The attribute is specified by
its agument name. Specify only attribute names with no values.

Specify only those attributes appropriate for the object type.

Notes
For a list of object types that you can use with this command,adde 1-4 on
pace 1-39.
If cvgetoperinfo is successful, it prints the command name followed byrthaw@ents
that the Provisioning Server returiYau can use this output to verify that the
arguments are the same as those specified in the original request.
Examples

The followingcvgetoperinfo command retrieves real time PvcDelay information
from the Provisioning Server:

[ opt/ ProvSer v/ bin/cvgetoperinfo
Switch.1.1.1.1.card. 4. pport.l.lport.1l.dlci.l100 -PvcDel ay

3-16 NavisXtend Provisioning Server User’s Guide



Using the CLI
cvhelp

cvhelp

Purpose

Provides usage help for the CLI.

Command Syntax

Parameters

Notes

Examples

cvhelp { object-type -attribute-name }

object-type specifies the object type (such as L Port, circuit, etc.) for which you want to
print supported attributes or enumerated attribute values.

-attribute-name specifies an enumerated attribute for which you want to print
supported enumerated values printed.

Issue cvhelp without arguments to print a command usage statement for each of the
CLI commands.

Issue cvhelp with the object-type argument to print the attribute IDs and attribute
types (such as INTEGER, STRING, and so on) that are supported for the specified
object.

Issue cvhelp with the object-type and -attribute-name arguments to print the
enumerated attribute values that are supported for the specified attribute and object.

The following cvhelp command prints a usage statement for each of the CLI
commands:

[ opt/ ProvSer v/ bin/cvhel p

The following cvhelp command prints alist of al attributes supported for cards:
[ opt/ ProvServ/bin/cvhel p card

The following cvhelp command prints alist of all enumerated attribute values

supported for the enumerated attribute CVA_L PortSmdsType belonging to the object
L Port:

[ opt/ ProvServ/bin/cvhel p | port -sndstype

NavisXtend Provisioning Server User’'s Guide 3-17



Using the CLI
cvlistallcontained

cvlistallcontained

Purpose

Queries the database for alist of objects of any type that are immediate children of a
specified object.

Command Syntax

cvlistallcontained object-name

Parameters

object-name specifies the parent object that represents the immediate parent of the
contained objects (such as a PPort that is a parent of multiple LPorts). The objectis
specified by its object 1D, based on the containment hierarchy (for information, see
“Managed Objects” on padl-12).

Notes

You can issue the function on either:

Network level — The function retrieves a list of objects on a network, including
all subnetsTo issue the function on a network level, specify an IP address, such
as 128.100.0.0.

Subnet level — The function retrieves a list of objects on a particular sulboet.
issue the function on a subnet level, specify an IP address with a subnet,numbe
such as 128.10011.0.

Table 3-1 lists the valid parent and child object types you can specify with this
command.

Table3-1. Valid Parent and Child Object Types

Parent Object Type Child Object Types
Card CardTca
PPort
Channel ChanPerformanceMonitor
L Port

PerformanceM onitor

Customer Circuit
L Port

3-18 NavisXtend Provisioning Server User’s Guide



Using the CLI
cvliistallcontained

Table3-1. Valid Parent and Child Object Types (Continued)

Parent Object Type Child Object Types

LPort AssignedSvcSecScn

Circuit

LPort (only for listing MLFR Members on an
MLFR Bundle)

PMPCktRoot

PM PSpvcRoot
SmdsGroupScreen

Smdsl ndividual Screen

SmdsL ocalIndividual Address
Spvc

SvcAddress

SvcConfig

SvcNetworkld

SvcPrefix
SvcSecScnActParam
SvcUserPart

VpciTable

Network Customer

NetCac
ServiceName
SmdsCountryCode
SmdsNetwideGroupAddress
SvcCUG
SvcCUGMbrRule
SvcSecSen

Switch
TrafficDesc

Trunk

VPN

PMPCktRoot PMPCktL eaf

PM PSpvcRoot PM PSpvcL eaf

PPort Aps (1-port OC-12¢/STM-4 and 4-port
OC-3/STM-1 cards only)

Channel

ChanPerformanceMonitor

L Port

PerformanceMonitor

PFdl (8-port ATM T1 card only)

PPortTca
TrafficShaper
ServiceName Circuit
SmdsGroupScreen SmdsAlienGroupAddress
SmdsSwitchGroupAddress
Smdsl ndividual Screen SmdsAlienindividual Address

SmdsL ocalIndividual Address

NavisXtend Provisioning Server User’'s Guide 3-19



Using the CLI

cvlistallcontained
Table3-1. Valid Parent and Child Object Types (Continued)
Parent Object Type Child Object Types
SmdsNetwideGroupAddress SmdsL ocallndividual Address
SmdsSwitchGroupAddress
SvcCUG SvcCUGMbr
SvcCUGMbrRule SvcCUGMbr
Switch Card
PnniNode
RefTimeServer
SmdsAddressPrefix
SmdsAlienGroupAddress
SmdsAlienindividual Address
SmdsSwitchGroupAddress
SvcNodePrefix
Trunk Circuit
VPN Circuit
L Port
If cvlistallcontained is successful, it prints the command name followed by the child
objectsthat the Provisioning Server returns. It prints out one line for each child object.
The command does not print any attributes for the listed objects.
Example
The following cvlistallcontained command lists all immediate children of a switch:
cvlistallcontained switch.1.1.1.1
If successful, the command returns the following text:
cvlistallcontained Switch.1.1.1.1.card. 1
cvlistallcontained Switch.1.1.1.1.card. 2
cvlistallcontained Switch.1.1.1.1.card. 3
cvlistallcontained Switch.1.1.1.1.card. 4
cvlistallcontained Switch.1.1.1.1.card.5
cvlistallcontained Switch.1.1.1.1.card. 6
cvlistallcontained Switch.1.1.1.1.card.?7
cvlistallcontained Switch.1.1.1.1.card. 8
cvlistallcontained Switch.1.1.1. 1. SwitchG oupAddr ess. 8889998889
cvlistallcontained Switch.1.1.1.1. AddressPrefi x. 123456
cvlistallcontained Switch.1.1.1.1. AddressPrefi x. 222333
cvlistallcontained Switch.1.1.1.1. AddressPrefi x. 890890
cvlistallcontained Switch.1.1.1.1. AddressPrefi x. 999000
cvlistall contained
Switch.1.1.1. 1. Ali enl ndi vi dual Addr ess. 8889998887
cvlistallcontained Switch.1.1.1.1. Ali enG oupAddr ess. 0009998887
3-20 NavisXtend Provisioning Server User’s Guide



Using the CLI
cvlistcontained

cvlistcontained

Purpose

Queries the database for alist of objects of a specified type that are children of a
specified object. The children can be positioned anywhere in the containment
hierarchy of the root object.

Command Syntax

cvlistcontained object-name object-type { -attribute-name} . . .

Parameters

object-name specifies the parent object. The parent object can be the immediate
parent of the contained objects (such as a PPort that is a parent of multiple

L Ports). Or, the parent object can be positioned higher in the containment
hierarchy (such as a switch that is a parent of multiple LPorts). The object is
specified by its object 1D, based on the containment hierarchy (for information, see
“Managed Objects” on padl-12).

object-type specifies the enumerated value that specifies the type of the objects to
be retrieved.

-attribute-name specifies an attribute to be retrieved for the object. The attribute is
specified by its ggument name. Specify only attribute names with no vaNes.
can specify up to 40 attributes.

Specify only those attributes appropriate for the object type.

If you want all attributes to be retrieved, omieHattribute-name argument. The
command returns all readable attributes for the child objects.

Notes

You can issue the function on either:

Network level — The function retrieves a list of objects on a network, including
all subnetsTo issue the function on a network level, specify an IP address, such
as 128.100.0.0.

Subnet level — The function retrieves a list of objects on a particular subpet.
issue the function on a subnet level, specify an IP address with a subnet,numbe
such as 128.10011.0.

Table 3-2 lists the valid parent and child object types you can specify with this
command.

NavisXtend Provisioning Server User’'s Guide 3-21



Using the CLI
cvlistcontained

Table3-2. Valid Parent and Child Object Types

Parent Object Type

Child Object Types

Card

Aps

CardTca

Channel

Circuit

LPort

Performance Monitor

PFdl

PM PSpvcRoot

PPort

Spvc
SmdsAlienGroupAddress
SmdsAlienindividual Address
SmdsGroupScreen

Smdsl ndividual Screen
SmdsL ocalIndividual Address
SmdsSwitchGroupAddress
SvcConfig

SvcNodePrefix

SvcUserPart

Trunk

Channel

Circuit

LPort

Performance Monitor
Trunk

Customer

Circuit
L Port

L Port

AssignedSvcSecScn
Circuit

PMPCktRoot
PMPSpvcRoot
SmdsGroupScreen
Smdslndividual Screen
SmdsL ocalIndividual Address
Spvc

SvcAddress
SvcConfig
SvcNetworkld
SvcPrefix
SvcSecScnActParam
SvcUserPart
VpciTable

Trunk

3-22

NavisXtend Provisioning Server User’s Guide



Using the CLI
cvlistcontained

Table3-2. Valid Parent and Child Object Types (Continued)

Parent Object Type

Child Object Types

Network

Circuit

Customer

NetCac

PMPCktL eaf

PMPCktRoot

PM PSpvcRoot
ServiceName
SmdsAddressPrefix
SmdsCountryCode

SmdsL ocalIndividual Address
SmdsNetwideGroupAddress
SveCUG

SvcCUGMbrRule
SvcSecSen

Switch

TrafficDesc

Trunk

VPN

PMPCktRoot

PMPCktL eaf

PM PSpvcRoot

PM PSpvcL eaf

PPort

Aps (1-port OC-12¢/STM-4 and 4-port

OC-3/STM-1 cards only)
Channel

Circuit

L Port

PerformanceM onitor

PFdl (8-port ATM T1 card only)|

PM PCktRoot
PMPSpvcRoot
PPortTca
Spvc
TrafficShaper
Trunk

SmdsGroupScreen

SmdsAlienGroupAddress
SmdsSwitchGroupAddress

Smdsl ndividual Screen

SmdsAlienindividual Address
SmdsL ocalIndividual Address

SmdsNetwideGroupAddress

SmdsL ocallndividual Address
SmdsSwitchGroupAddress

SveCUG

SvcCUGMbr

SvcCUGMbrRule

SvcCUGMbr

NavisXtend Provisioning Server User’'s Guide

3-23



Using the CLI
cvlistcontained

Example

Table3-2. Valid Parent and Child Object Types (Continued)

Parent Object Type Child Object Types

Switch Aps

Card

Channel

Circuit

L Port

Performance Monitor

PFdI

PMPCktRoot
PMPSpvcRoot

PnniNode

PPort

RefTimeServer
SmdsAddressPrefix
SmdsAlienGroupAddress
SmdsAlienindividual Address
SmdsGroupScreen

Smdsl ndividual Screen
SmdsL ocalIndividual Address
SmdsSwitchGroupAddress
Spvc

SvcAddress

SvcConfig

SvcNodePrefix

SvcPrefix

SvcUserPart

Trunk

Trunk Circuit

VPN Circuit
L Port
Trunk

If cvlistcontained is successful, it prints the command name followed by the child
objectsthat the Provisioning Server returns. It prints one line for each child object and
includes attributes and values.

The following cvlistcontained command lists all LPorts on agiven switch by their
Names:

cvlistcontained switch.1.1.1.2 | port -Nanme

If successful, the command returns the following text:
cvlistcontained Switch.1.1.1.2.card.4.pport.2.lport.1 -Nane |portl
cvlistcontained Switch.1.1.1.2.card.4.pport.1.lport.1 -Nane |port2
cvlistcontained Switch.1.1.1.2.card.4.pport.3.1port.1 -Nane |port3

3-24

NavisXtend Provisioning Server User’s Guide



Using the CLI
cvmodify

cvmodify

Purpose

Modifies specific attributes of an object in the database and (optionally) in the switch.

Command Syntax

Parameters

Notes

cvmodify object-name { -attribute-name value } . . .

object-name specifies the object to be modified. The object is specified by its object
ID, based on the containment hierarchy (for information, Semaged Objects” on
page 1-12).

-attribute-name value specifies an attribute and its value to be modified. The
attribute is specified by itsgument name. The value uses a data type appropriate
for the agument.

Specify only those attributes and values appropriate for the objectviypean
specify any attribute except those with either the Read-Only or Create-Only access
restriction.

For a list of object types that you can use with this commaed,adde 1-4 on
page 1-39

You can use this command to create a card or PPort. The NavisCore database
automatically populates each switch with cards of type “empty&.cusodify to

change the catd type from “empty” to the specified type. Likewise, once a card has
been configured, NavisCore automatically populates the card with all necessary
Physical Ports. Usevmodify to change the PPort specifications. In the case of the
channelized DS3 card, once the card has been configured, NavisCore automatically
populates the card with all necessary channelscdnodify to change the channel
specifications.

You can use this command to remove a card.cusodify to change the casltype
to “empty”.

If cvmodify is successful, it prints the command name followed byrtihe@ents that
the Provisioning Server returnéou can use this output to verify that thiguanents
are the same as those specified in the original request.

NavisXtend Provisioning Server User’'s Guide 3-25



Using the CLI
cvmodify

Example

The following cvmodify command creates a card by specifying itstype and
administrative status:

/opt/ProvServ/bin/cvimodify Switch.1.1.1.1.card. 4 -DefinedType
1Port At nDs3Uni - Admi nStatus Up

If successful, the command returns the following text:
/opt/ ProvServ/bin/cvrnodify Switch.1.1.1.1.card. 4
- Defi nedType 1Port At nDs3Uni
- Adm nSt atus Up

3-26 NavisXtend Provisioning Server User’s Guide



Using the CLI
cvstartdiag

cvstartdiag

Purpose

Starts diagnostics on an object in the network.

Command Syntax

cvstartdiag object-name { -attribute-name } . . .

Parameters

object-name specifies the object whose attributes are to be retrieved. The object is
specified by its object 1D, based on the containment hierarchy (for information, see
“Managed Objects” on padl-12).

-attribute-name specifies an attribute to be retrieved. The attribute is specified by
its agument name. The value uses a data type appropriate fomgiment.

Specify only those attributes appropriate for the object type.

Notes
For a list of object types that you can use with this command,adde 1-4 on
pace 1-39.
If cvstartdiag is successful, it prints the command name followed byrten@ents
that the Provisioning Server returiYau can use this output to verify that the
arguments are the same as those specified in the original request.
Examples

The followingcvstartdiag command starts diagnostics:
[ opt/ ProvServ/bin/cvstartdiag
Switch.1.1.1. 1. card. 4. pport.1 -Test Type internal

NavisXtend Provisioning Server User’'s Guide 3-27



Using the CLI
cvstopdiag

cvstopdiag

Purpose

Stops diagnostics on an object in the network.

Command Syntax

cvstopdiag object-name

Parameters

object-name specifies the object whose attributes are to be retrieved. The object is
specified by its object 1D, based on the containment hierarchy (for information, see
“Managed Objects” on padl-12).

Notes
For a list of object types that you can use with this commapd,adde 1-4 on
page 1-39
If cvstopdiag is successful, it prints the command name followed byriengents
that the Provisioning Server returiYau can use this output to verify that the
arguments are the same as those specified in the original request.
Examples

The followingcvstopdiag command stops diagnostics:
[ opt/ ProvSer v/ bin/cvst opdi ag
Switch.1.1.1.1. card. 4. pport.1

3-28 NavisXtend Provisioning Server User’s Guide



Using the CLI
cvupdatediag

cvupdatediag

Purpose

Modifies diagnostic parameters on the switch for an object being diagnosed on the
network.

Command Syntax

Parameters

Notes

Examples

cvupdatediag object-name { -attribute-name} . ..

object-name specifies the object whaose attributes are to be retrieved. The object is
specified by its object 1D, based on the containment hierarchy (for information, see
“Managed Objects” on padl-12).

-attribute-name specifies an attribute fand its value to be used for setting up the
diagnostics.. The attribute is specified by itguanent name. The value uses a
data type appropriate for thegament.

Specify only those attributes appropriate for the object type.

For a list of object types that you can use with this commapd,adde 1-4 on
page 1-39.

If cvupdatediag is successful, it prints the command name followed byrthew@ents
that the Provisioning Server returiYau can use this output to verify that the
arguments are the same as those specified in the original request.

The followingcvupdatediag command modifies diagnostic parameters on the switch:
[ opt/ ProvSer v/ bi n/ cvupdat edi ag
Switch.1.1.1.1.card. 4. pport.1 -Test Type cl earcounter

NavisXtend Provisioning Server User’'s Guide 3-29



Using the CLI
CLI Examples

CLI Examples

This section provides usage examples of each of the managed objects. Use these
examples as guidelines for syntax and usage.

Sample CLI Format

CVT_APS

Conventions used in the samples are as follows:
<ip_address> — Represents an IP address, such as 130.2.20.1.
<network_no> — Represents a network number.

<id> — Represents any numeric number representation, such as card number, PPort
number, LPort number, channel number, DLCI number, VPl number, VCI number,
PMPSpvcLeaf number, country code number, and so on. There is no relationship
among the values for these numbers.

<name> — Represents a name string, such as the customer name string, Traffic
Descriptor name string, VPN name string, switch name, and so on. If the string name
contains a special character (such as a period or a blank character), enclose the entire
string within /” characters. For example:

["'my switch/”

<svc_string> — Represents an address string that conforms to the convention for SVC
addresses.

<svccug_string> — Represents an SVC CUG string.
<rule_string> — Represents an SVC CUG member rule string.
<peer_group_string> — Represents an Peer Group string.

{-Attribute value}* — Represents the applicable attribute-value pair. An asterisk (*)
indicates that you can specify multiple attribute-value pairs.

There is no identifier for APS.
cvlistcontained switch.<ip_address>.card.<id>.pport.<id> aps
cvget switch.<ip_address>.card.<id>.pport.<id>.aps {-Attribute}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.aps {-Attribute value}*

CVT_AssignedSvcSecScn

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> assignedsvcsecscn

3-30

NavisXtend Provisioning Server User’s Guide



Using the CLI
CLI Examples

CVT_Card

cvlistcontained switch.<ip_address> card

cvmodify switch.<ip_address>.card.<id> {-Attribute value} *

CVT_CardTca

cvmodify switch.<ip_address>.card.<id>.cardtca {-Attribute value}*

CVT_Channel

cvget switch.<ip_address>.card.<id>.pport.<id>.channel .<id> {-Attribute }*

CVT_Circuit

Circuits are dways identified by their endpoints. An endpoint can be an LPort or a
ServiceName; the object |D representation differs accordingly.

In the case of LPorts, endpoints are represented differently according to different
service types for the containing L Port. For Frame Relay, an endpoint isidentified by
DLCI number; for ATM, an endpoint isidentified by the VPI, VCI pair. Specify the
first endpoint as the main object identifier in the CLI command. Specify the second
endpoint as an mandatory attribute to the first endpoint (using “~-Endpoint2”).

In the case of ServiceName, the endpoint is identified by the network number, the
name of the ServiceName binding, and the VPI/VCI pair or DLCI number (depending
on endpoint type). As with LPorts, the second endpoint is represented as an mandatory
attribute to the first endpoint using “-Endpoint2.”

> On a GX 550 switch, PPort IDs are fixed on a subcard. If you are provisioging
this switch model, be sure to specify the fixed PPort ID. See “GX 550 Support”

in Software Release Notice for NavisXtend Provisioning Server included with

this release for information about creating Circuits on the GX 550 switch.

ServiceName Endpoints
cvadd network.<network_no>.servicename.<name>.vpi.<id>.vci.<id> {-Attribute value} *

cvadd network.<network_no>.servicename.<name>.dlci.<id> {-Attribute value}*

NavisXtend Provisioning Server User’'s Guide 3-31



Using the CLI
CLI Examples

LPort Endpoints

ATM - ATM circuit;

cvadd switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.vpi.<id>.vci.<id> {-Attribute value} *
switch.<ip_address>.card.<id>.pport.<id>.|port.<id>.vpi.<id>.vci.<id>

ATM - Frame Relay circuit:

cvadd switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.vpi.<id>.vci.<id> {-Attribute value}*
switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.dIci<id>

cvadd Switch.100.100.100.5.card.13.pport.5.Iport.1.vpi.4.vci. 76
-Namefr_to_atm -FwdRateEnf Scheme Simple -RevRateEnf Scheme Jump
-FwdZeroCIR Off -RevZeroCIR Off -FwdQOSClass VBRNonRea Time
-FwdTrafficDescType PcrClp01ScrClpOMbsClp0Tag
-RevQOSClass VBRRea Time -NdcEnablel On
-TrafficMgmtCtdStatus Enabled
-Alias fr_to_atm -FwdParam1 100 -FwdParam?2 100 -FwdParam3 100
-Cir2 128000 -Bc2 128000 -Be2 64000 -Priority 1
-RevPriority 1 -Graceful Discard On -RevGraceful Discard On -RevDeltaBc 1024
-RevDeltaBe 2048 -AdminStatus Up -Loopback?2 Normal -RerouteBalance Enabled
-Endpoint2
Switch.100.100.100.8.card.3.pport.1.channel .2.Iport.1.dlci.57
-BandwidthPriority 0 -BumpingPriority 0 -FwdFcpDiscard CLP1
-RevFcpDiscard CLP1
-UpcFunction Enabled -CdvTolerance 600 -OamAlarms Enabled
-Trangl ationType 1483and1490
-CLPfr_de-DE atm_clp -RevRedFramePercent 100 -V pnName Public
-CustomerName Public -PrivNetOverflow Public -Clp0Cell Threshl 150135
-Clp1CellThreshl 150135 -AcctChrgPartyld1 35 -AcctUsageM easurel Enabled
-AcctPvcControl 1 Enabled -FrPvcParamRecording2 Disabled
-FrAcctPvcControl 2 Enabled
-FrAcctChrgPartyld2 35 -FrAcctUsageMeasure? All -TrafficMgmtCtd 11
-FrToAtmEFCI Fr-Fecn -1sMgmtCkt True -AdminCost 10

Frame Relay - Frame Relay circuit:

cvadd switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.dIci.<id> {-Attribute value} *
switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.dlci<id>

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> circuit

cvadd Switch.100.100.100.8.card.3.pport.1.channel .2.Iport.1.dIci.456
-Name fr_to_fr -FwdRateEnfScheme Simple -RevRateEnfScheme Jump
-FwdZeroCIR On -RevZeroCIR Off -FwdQOSClass UBR
-RevQOSClass VBRNonRea Time -TrafficM gmtCtdStatus Enabled -Alias fr_to_fr
-Cir2 256000 -Bc2 256000 -Be2 16000 -RevPriority 1
-GracefulDiscard On -RevGracefulDiscard On -RevDeltaBc 65528
-RevDéeltaBe 65528 -AdminStatus Up -Loopbackl Normal
-Loopback2 Normal -RerouteBalance Enabled
-Endpoint2

Switch.100.100.100.8.card.3.pport.1.channel .2.1port.1.dlci.475
-BandwidthPriority 15 -BumpingPriority 7 -FwdFcpDiscard EPD
-RevFcpDiscard CLP1 -RevRedFramePercent 75 -VpnName Public

332 NavisXtend Provisioning Server User’s Guide



Using the CLI
CLI Examples

-CustomerName Public -PrivNetOverflow Public -FrPvcParamRecordingl
Disabled

-FrPvcParamRecording2 Disabled -FrAcctPvcControl1 Enabled
-FrAcctPvcControl2 Enabled

-FrAcctChrgPartyldl 45 -FrAcctChrgPartyld2 45
-FrAcctUsageM easurel FramesAndDeBytes

-FrAcctUsageM easure2 BytesAndDeBytes - TrafficMgmtCtd 10 -IsMgmtCkt False

-AdminCost 100

cvadd Switch.100.100.100.5.card.13.pport.5.Iport.1.vpi.3.vci.234
-Name atm_to_atm -FwdQOSClass CBR -FwdTrafficDescType
PcrClpOPcrClp01Tag
-RevQOSClass ABR -RevTrafficDescType PcrClpOMcrClp0 -NdcEnablel On
-NdcEnable2 On -TrafficMgmtCtdStatus Disabled
-TrafficM gmtFwdCdvStatus Enabled
-TrafficMgmtFwdClrStatus Enabled -Alias atm_to_atm -FwdParaml 100
-FwdParam2 100 -RevParaml 100 -RevParam2 100 -RevPriority 1
-AdminStatus Up -RerouteBalance Enabled
-Endpoint2 Switch.100.100.100.5.card.13.pport.5.Iport.1.vpi.7.vci.432
-BandwidthPriority O -BumpingPriority O -FwdFcpDiscard CLP1
-RevFcpDiscard CLP1 -UpcFunction Enabled -CdvTolerance 600
-OamAlarms Enabled -VpnName Public -CustomerName Public
-PrivNetOverflow Public -ClpOCellThreshl 300270 -Clpl1CellThreshl
300270
-Clp0CéllThresh2 150135 -Clp1CellThresh2 300270 -AcctChrgPartyldl 56
-AcctUsageMeasurel Egress -AcctPvcControl1 Disabled
-AcctChrgPartyld2 56
-AcctUsageMeasure? Ingress -AcctPvcControl2 Study -TrafficMgmtFwdCdv 20
-TrafficMgmtFwdClr 5 -IsMgmtCkt True -FwdFrameDiscardStatus Enabled
-RevFrameDiscardStatus Enabled -AdminCost 0

CVT_Customer

cvlistcontained network.< ip_address> customer

cvget network.<ip_address>.customer.<name> {-Attribute } *

CVT_DefinedPath

CVT_LPort

cvget switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.dIci<id>.definedpath {-Attribute}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.|port.<id>.vpi<id>.vci<id>.definedpath
{-Attribute } *

Normal LPort type:
cvadd switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> {-Attribute value}*
cvmodify switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> {-Attribute value} *

cvget switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> {-Attribute } *

NavisXtend Provisioning Server User’'s Guide 3-33



Using the CLI
CLI Examples

ATM Virtual UNI LPort type:

The LPort number is generated automatically from the Start VPI number and the
L Port interface number. Therefore, during creation, you do not need to provide an
L Port number. To retrieve information for the LPort, you must specify its L Port
number. To obtain this number, use cvlistcontained.

cvadd switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id> {-Attribute value}*
cvmodify switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id> {-Attribute value}*
cvget switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id> {-Attribute }*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> [port
ATM Network Interworking for Frame Relay NNI LPort type:

The LPort number isidentified by VPI/VCI pair.

cvadd switch.<ip_address>.card.<id>.pport.<id>.vpi.<id>.vci.<id> {-Attribute value}*
cvmodify switch.<ip_address>.card.<id>.pport.<id>.vpi.<id>.vci.<id> {-Attribute value} *
cvget switch.<ip_address>.card.<id>.pport.<id>.vpi.<id>.vci.<id> {-Attribute } *

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> [port
MLFRBundle LPort type:

The LPort isidentified by card, not by PPort.
cvadd switch.<ip_address>.card.<id>.Iport.<id> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.Iport.<id> {-Attribute value} *

The following command lists all the MLFRMember L Ports bound to the specified
MLFRBundle LPort:

cvlistcontained switch.<ip_address>.card.<id>.Iport.<id> Iport
MLFRMember LPort type:

The LPort isidentified by PPort.
cvadd switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> {-Attribute value} *

The following command binds a member to a bundle L Port, where both LPort are on
the same PPort of the same card:

cvaddmember switch.<ip_address>.card.<id>.Iport.<id>
switch.<ip_address>.card.<id>.pport.<id>.|port.<id>

The following command unbinds a member from a bundle L Port:

cvdeletemember switch.<ip_address>.card.<id>.Iport.<id>
switch.<ip_address>.card.<id>.pport.<id>.lport.<id>

3-34 NavisXtend Provisioning Server User’s Guide



Using the CLI
CLI Examples

> On aGX 550 switch, PPort IDs are fixed on a subcard. If you are provisioning

this switch model, be sure to specify the fixed PPort ID. See “GX 550 Support”
in Software Release Natice for NavisXtend Provisioning Server included with
this release for information about creating LPorts on the GX 550 switch.

CVT _NetCac

Thereisnoidentifier for NetCac.
cvlistcontained network.<ip_address> netcac

cvmodify network.<ip_address>.netcac {-Attribute value}*

CVT_PerformanceMonitor

Thereisno identifier for PerformanceMonitor.
cvlistcontained switch.<ip_address>.card.<id>.pport.<id> pm
cvget switch.<ip_address>.card.<id>.pport.<id>.pm {-Attribute } *

cvmodify switch.<ip_address>.card.<id>.pport.<id>.pm {-Attribute value} *

CVT_PFdI
Thereisno identifier for PFdl.
cvlistcontained switch.<ip_address>.card.<id>.pport.<id> fdl
cvget switch.<ip_address>.card.<id>.pport.<id>.fdl {-Attribute}*
cvmodify switch.<ip_address>.card.<id>.pport.<id>.fdl {-Attribute value}*
CVT_PMPCkt

A PMP circuit leaf can be added only when a PMPCktRoot exists. The circuit type of
aleaf must be the same as that of the root. For example, if the PMPCktRoot has been
created without specifying the VCI value, al the leaves to be added to that particular
root should not have their VCI value specified.

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpcktleaf .vpi.<id>.vci.<id>
{-Attribute value} *

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpcktroot.vpi.<id>.vci.<id>
pmpcktleaf

CVT_PMPCktRoot

For VCC circuit type:

NavisXtend Provisioning Server User’'s Guide 3-35



Using the CLI
CLI Examples

cvadd switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.pmpcktroot.vpi.<id>.vci.<id> { -Attribute
value} *

For VPC circuit type:
cvadd switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.pmpcktroot.vpi.<id> { -Attribute val ue} *

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> pmpcktroot

CVT_PMPSpvcLeaf

A PMPSpvc circuit leaf can be added only when a PMPSpvcRoot exists.

For PMPSpvcL eaf objects, specify the Root parent as part of the object ID
representation. For example:

cvadd switch.<ip_address>.card.<id>.pport.<id>.|port.<id>.pmpspvcroot.vpi.<id>[.vci.<id>].
pmpspvcleaf.<id> {-Attribute value} *

You no longer need to specify the Root object as one of the attributes.

You must specify the correct instance number when you perform a cvadd, cvget,
cvmodify, or cvdelete. To retrieve the correct instance number from the database, use
the attribute CVA_PMPSpvcRootNextAvailablel eafNo.

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpspvcroot.vpi.<id>.vci.<id>
pmpspvcleaf

CVT_PMPSpvcRoot

For VCC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.|port.<id>.pmpspvcroot.vpi.<id>.vci.<id>
{-Attribute value} *

3-36 NavisXtend Provisioning Server User’s Guide



Using the CLI
CLI Examples

For VPC circuit type:
cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpspvcroot.vpi.<id> {-Attribute value} *

cvlistcontained switch.<ip_address>.card.<id> pmpspvcroot

CVT_PnniNode

cvadd switch.<ip_address>.pnninode.<peer_group_string> { -Attribute value} *
cvget switch.<ip_address>.pnninode.<peer_group_string> {-Attribute } *

cvmodify switch.<ip_address>.pnninode.<peer_group_string> {-Attribute value} *

CVT_PPort

cvlistcontained switch.<ip_address>.card.<id> pport

cvget switch.<ip_address>.card.<id>.pport.<id> {-Attribute } *

CVT_PPortTca

cvmodify switch.<ip_address>.card.<id>.pport.<id>.pporttca {-Attribute value}*

CVT_RefTimeServer

cvadd switch.<ip_address>.reftimeserver.<ip_address> {-Attribute value} *
cvmodify switch.<ip_address>.reftimeserver.<ip_address> {-Attribute value}*

cvlistcontained switch.<ip_address>  reftimeserver

CVT_ServiceName

cvadd network.<ip_address>.servicename.<name> {-Attribute value}*
cvmodify network.<ip_address>.servicename.<name> {-Attribute value} *

cvlistcontained network.<ip_address>  servicename

CVT_SmdsAddressPrefix

cvlistcontained switch.<ip_address> addressprefix

CVT_SmdsAlienGroupAddress

cvlistcontained switch.<ip_address> aliengroupaddress

CVT_SmdsAlienindividualAddress

cvlistcontained switch.<ip_address> alienindividualaddress

NavisXtend Provisioning Server User’'s Guide 3-37



Using the CLI
CLI Examples

CVT_SmdsCountryCode

cvadd network.<ip_address>.countrycode.<id> {-Attribute value}

CVT_SmdsGroupScreen

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> groupscreen

CVT_SmdsindividualScreen

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> individual screen

CVT_SmdsLocallndividualAddress

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> localindividual address

CVT_SmdsNetwideGroupAddress

cvlistcontained network.<ip_address> netwidegroupaddress

CVT_SmdsSwitchGroupAddress

cvlistcontained switch. <ip_address> switchgroupaddress

CVT_Spvc

For VCC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.spvc.vpi.<id>.vci.<id> {-Attribute value} *

For VPC circuit type:
cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.spvc.vpi.<id> {-Attribute value} *

cvlistcontained switch.<ip_address>.card.<id> spvc

CVT_SvcAddress

An SvcAddressis represented by a string that conforms to the convention used to
specify SVC addresses. The format of the cvadd, cvmodify, cvget, or cvdelete
command depends on the format of the SV C address.

cvadd switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>. svcaddress.<svc_string>
{-Attribute value} *

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> svcaddress

Seethe CVT_L Port object description for sample formats that specify other LPort
types.

3-38 NavisXtend Provisioning Server User’s Guide



Using the CLI
CLI Examples

CVT_SvcConfig
cvmodify switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.svcconfig {-Attribute value}*
CVT_SvcCUG

No attributes are needed for addition.
cvadd network.<ip_address>.svccug.<svecug_string>

cvlistcontained network. <ip_address> svccug

CVT_SvcCUGMbr

cvadd network.<ip_address>.svccug.<sveecug_string>.svecugmbr.<rule_string> { -Attribute value} *

cvlistcontained network.<ip_address>.svcecug.<svccug_string> svecugmbr

CVT_SvcCUGMbrRule

cvadd network.<ip_address>.svccugmbrrule.<rule_string> { -Attribute value} *

cvlistcontained network.<ip_address>.svccugmbrrule

CVT_SvcNetworkld

Normal LPort type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.svcnetworkid.<svc_str> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.svcnetworkid.<svc_str>
{-Attribute value} *

cvget switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.svcnetworkid.<svc_str> {-Attribute } *
ATM Virtual UNI LPort type:

The LPort number is generated automatically from the Start VPl number and the

L Port interface number. Therefore, during creation, you do not need to provide an

L Port number. To retrieve information for the LPort, you must specify its L Port
number. To obtain this number, use cvlistcontained.

cvadd switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id>.svcnetworkid.<svc_str>
{-Attribute value} *

cvmodify switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id>.svcnetworkid.<svc_str>
{-Attribute value} *

cvget switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id>.svcnetworkid.<svc_str> {-Attribute } *

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id>.svcnetworkid
{-Attribute value} *

NavisXtend Provisioning Server User’'s Guide

3-39



Using the CLI
CLI Examples

Seethe CVT_L Port object description for sample formats that specify other L Port
types.

CVT_SvcNodePrefix

An SvcNodePrefix is represented by a string that conforms to the convention used to
specify SVC addresses. The format of the cvadd, cvmodify, cvget, or cvdelete
command depends on the format of the SV C address.

cvadd switch.<ip_address>.svcnodeprefix.<svc_string> {-Attribute value}*

cvlistcontained switch.<ip_address>  svcnodeprefix

CVT_SvcPrefix

An SvcPrefix isrepresented by a string that conforms to the convention used to
specify SV C addresses. The format of the cvadd, cvmodify, cvget, or cvdelete
command depends on the format of the SV C address.

cvadd switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.svcprefix.<svc_string> {-Attribute value} *
cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> svcprefix

Seethe CVT_L Port object description for sample formats that specify other LPort
types.

CVT _SvcSecScn

cvlistcontained network.<ip_address> svcsecscn

CVT _SvcSecScnActParam

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> svcsecscnactparam

CVT _SvcUserPart

An SvcUserPart is represented by a string that conforms to the convention used to
specify SVC addresses. The format of the cvadd, cvget, or cvdelete command
depends on the format of the SV C address.

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>. svcuserpart.<svc_string>

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.|port.<id> svcuserpart

Seethe CVT_L Port object description for sample formats that specify other L Port
types.

CVT_Switch

cvlistcontained network.<ip_address> switch

3-40 NavisXtend Provisioning Server User’s Guide



Using the CLI
CLI Examples

CVT _TrafficDesc

cvadd network.<ip_address>.trafficdesc.<name> {-Attribute value} *

cvlistcontained network.<ip_address> trafficdesc

CVT _TrafficShaper

CVT_Trunk

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> ts

cvget switch.<ip_address>.card.<id>.pport.<id>.ts.<id> {-Attribute}*

cvget network.<ip_address>.trunkname.<name> {-Attribute }*
cvlistcontained network.<ip_address> trunk
In addition, the following command returns al the circuits configured on a trunk:

cvlistcontained network.<ip_address>.trunkname.<name> circuit

When adding a trunk, specify the LPort of each trunk endpoint:
cvadd network.<ip_address>.trunkname.<name>

-Lportl switch.<ip_address>.card.<id>.pport.<id>.lport.<id>
-Lport2 switch.<ip_address>.card.<id>.pport.<id>.Iport.<id> {-Attribute value}*

When adding a Multi-Link Frame Relay (MLFR) trunk, specify the L Port of each
trunk endpoint without specifiying a PPort:

cvadd network.<ip_address>.trunkname.<name>

-Lportl switch.<ip_address>.card.<id>.lport.<id>
-Lport2 switch.<ip_address>.card.<id>.lport.<id> {-Attribute value}*

To identify Direct Trunk LPort type (such as DirectLine Trunk, ATM Direct Trunk,
and so on):

switch.<ip_address>.card.<id>.pport.<id>.lport.<id>
To identify Frame OPTimum Trunk LPort type:
switch.<ip_address>.card.<id>.pport.<id>.dlci.<id>

To identify ATM OPTimum Trunk L Port type (such as ATM OPTimum Cell Trunk,
ATM OPTimum Frame Trunk, and so on):

switch.<ip_address>.card.<id>.pport.<id>.vpi.<id>.vci.<id>

To identify MLFR Trunk LPort type:

switch.<ip_address>.card.<id>.Iport.<id>

NavisXtend Provisioning Server User’'s Guide 3-41



Using the CLI
CLI Examples

CVT_VPCITable

cvadd switch.<ip_address>.card.<id>.pport.<id>.Iport.<id>.vpcitable.<id> { -Attribute value} *

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> vpcitable

CVT_VPN

cvadd network.<ip_address>.vpn.<name>

3-42 NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB

This chapter describes how to use the SNMP MIB to access the Provisioning Server.
To understand the Provisioning Server object hierarchy, first read Chapter 1.

About the Enterprise-specific MIB

The enterprise-specific MIB interface provides SNMP access to the Provisioning
Server. Use the Provisioning Server MIB to provision via SNMP instead of using aC
or C++ program or the CLI.

> The Provisioning Server MIB is different than the Ascend Enterprise MIB.

TheProvisioning Server SNM P agent supportsthe SNMPv1 and SNMPv2c protocols.
The following SNMP operations are supported:

. get
. get—next

» set (used for creating, modifying, and deleting)

> The Provisioning Server does not generate or process SNMP traps, nor dpes it
support thegetBulkRequest andlnformRequest SNMPv2 PDU types.

The Provisioning Server MIB is defined according to Structure of Management
Information version 2 (SMIv2). You can view the MIB with an SMIv2-compliant
MIB browser.

To compile the MIB, use an SMIv2-compliant compiler.

NavisXtend Provisioning Server User’'s Guide 4-1



Using the SNMP MIB
MIB Structure

The MIB is defined in the file provserv.mib, which isinstalled in the directory
/opt/ProvServ/snmp_mibs.

If you install the Provisioning Server on a separate machine from NavisCore, and you
want to use the HP OpenView MIB browser to view the MIB, perform the following

steps:

1. Filetransfer provserv.mib from the Provisioning Server machine to the directory
opt/CascadeView/snmp_mibs on the NavisCore machine.

2. Load the MIB file from the NavisCore machine.

For alisting of the variablesin the Provisioning Server MIB, see the NavisXtend
Provisioning Server Enterprise MIB Definitions.

Community Strings

The Provisioning Server implements an SNMP agent as a separate entity within the
server to service MIB interface requests. The community name provides a mechanism
for authentication and access-control at the agent. The Provisioning Server supports
two community names, one for Read-Only operations and another for Read-Write
operations.

The community strings are defined using the environment variables
CV_READONLY_COMMUNITY_STRING (default value ‘public’) and
CV_READWRITE_COMMUNITY_STRING (default value ‘ascend’). If the
environment variables are defined in the dasiprt-server.sh, the specified strings

take precedence. If they are not set in the script or if the server shell environment does
not define the variables, the server assumes the default values.

If the community name is not valid when you issue an snmp_set request, the request
exceeds the time-out period and fafleu can access the Command Effrable in the

MIB to see if the source of the problem is an invalid community name. Specify the
Read-Only community name when you access the table, as that community nhame is
used for validation purposes.

When you make an snmp_get request, specify either the Read-Only or the/fRead-
community name. If you use &fgirent community name and you encounter arrerro
the error is not propagated to the Command Erabte.

For details on setting environment variables to configure how the Provisioning Server
handles MIB requests, ségetting EnvironmenYariables” on pag2-11.

MIB Structure

The Provisioning Server MIB defines objects that a client can configure or read. The
MIB is organized into logical groups by object (node, card, LPort, PPort, and so on).
Each group contains table entries that map to the attributes of the API.

4-2 NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
MIB Structure

The various groups of the MIB are placed under the Provisioning Server object
identifier (OID):

1.3.6.1.4.1.277.9.1
where the last term in the OID represents the version number of the MIB.

Each group can have one or more tables and/or scalar objects. The tables are
two-dimensional, with each column representing an attribute and each row
representing an object instance on a switch. Because a column contains rows for all
possible object instances, many of which may not actually use that attribute, atable
can contain holes. Holes are non-applicable elements of the matrix. For example, in
the PPort table, the column that contains the attribute pportChannellsinUse is sparse
because it contains values only for PPort instances present on channelized cards.

Row instancesin atable are uniquely identified by Index information. The Index
represents the information you need to provide when issuing a command on a
particular abject. For example, to configure an LPort, you need to specify the IP
address of the switch that contains the L Port and the ifIndex.

Segmented Information in Multiple Tables

L Ports are always identified by specifying the | P address of the switch that contains

the LPort and the LPort’s ifindex. Because LPorts are complex objects, additional
information (such as LPortld, DLCI number, or VPI/VCI pair) is required to obtain an
ifindex.

The MIB uses Translation Tables to convert the information required for a specific
LPort type into the ifindex value. The Translation Table provides a unigue key to
access a specific row in the Configuration Table (the table that contains the
configuration attributes of the LPorfjable 4-1lists the information required to
create each type of LPort and which specific Translation Table to use.

Table4-1. Information Required for Creating Specific L Ports

L Port Type Information Tableto Use
Required
ATM Direct Trunk Switch IportldindexTransTable
ATM UNI DCE/DTE Card IportldChannelIndexTransTable (for LPorts
Direct Line Trunk PPort on the channelized DS3 card)
Encapsulation FRAD LPort Id

FR NNI

FR UNI DCE/DTE

PPP t01490 Encapsulation
SMDSDXI/SNI DTE/DCE
SMDS OPT Trunk
SMDSSSI DTE

NavisXtend Provisioning Server User’'s Guide 4-3



Using the SNMP MIB
MIB Structure

Table4-1. Information Required for Creating Specific L Ports (Continued)

L Port Type I nfor mation Tableto Use
Required
FR OPT PVC Trunk Switch dicilndexTransTable
Cad diciChannelIndexTransTable (for LPorts on
PPort the channelized DS3 card)
DLCI
Virtual UNI DCE/DTE Switch vpiStartlndexTransTable
Card
PPort
VPI start
number
ATM OPT Cedll Trunk Switch vpiVcilndexTransTable
Cad vpiVciChannelIndexTransTable (for LPorts
PPort on the channelized DS3 card)
VPI (1-15)/
VCI 0
ATM Network Interworking for | Switch vpiVcilndexTransTable
FRNNI Cad vpiV ciChannelIndexTransTable (for LPorts
ATM OPT Frame Trunk PPort on the channelized DS3 card)
VPI (0-15)/
VCI (32-255)

Circuits are segmented into several categories of tables, based on technology. You
access various tables to configure circuit endpoints and configure the
cross-connections between endpoints. Table 4-2 lists the information required to
create each type of circuit endpoint and which specific endpoint table to use. The type
of endpoint table to use depends on the type of services offered on the card on which
the endpoint is created. Note that the ServiceName can be used with either or both

endpoints.

Once the endpoints are created, use the CircuitCrossConnectTable.

4-4

NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
MIB Structure

Table4-2. Information Required for Creating Specific Circuits
Circuit Type Card Type Information Tableto Use
Required
FR-FR All cardson B-STDX {'switchldIndex frCircuitEndpointTable
and STDX  except: Iportlfindex
1-port ATM IWU OC3 Dicildindex}
1-port ATM-CS/DS3
6-port DS3 Frame Relay
card on CBX 500.
FR-FR All cardson B-STDX {'switchldIndex frCircuitEndpointTable (for
(with either and STDX except: Iport!flndex non-ServiceName endpoint)
endpoint using ) ] P ; ;
ServiceName) 1-port ATM IWU OC3 Dicildindex } (for frracbllrcufltSerS\/(;r cgl\l;ilneEncégggt
1-port ATM-CS/DS3 non-ServiceName based q e_( (:)r viceName
; endpoin
6-port DS3 FrameRelay | endpoint) P
card on CBX 500. { networkldIndex
networkServiceName
Index
dicildindex} (for
ServiceName based
endpoint)
ATM-ATM All cards on CBX/GX {'switchldIndex atmCircuitEndpointTable
(except 6-port DS3 Iportlfindex
Frame Relay) and 1-port ]
ATM IWU OC3 and vpilndex
1-port ATM CS/DS3 vcilndex}
card on B-STDX
ATM-ATM All cards on CBX/GX {'switchldIndex atmCircuitEndpointTable (for
(with either (except 6-port DS3 Iport!flndex non-ServiceName endpoint)
endpq nt using Frame Relay) and 1-port vpilndex atmCircuitServiceNameEndpoint
ServiceName) ATM IWU OC3 and . Table for ServiceName based
1-port ATM CS/DS3 vcilndex} (for endpoint)
card on B-STDX non-ServiceName based
endpoint)
{ networkldIndex
networkServiceName
Index
vpilndex
vcilndex} (for
ServiceName based
endpoint)

NavisXtend Provisioning Server User’'s Guide



Using the SNMP MIB

MIB Structure

Table4-2. Information Required for Creating Specific Circuits (Continued)
Circuit Type Card Type Information Tableto Use
Required
ATM-ATM One endpoint on any For category A or For category A without
card that isone of the category B without ServiceName use
following (category A): | ServiceNames use: amCircuitEndpointTable.
All cards on CBX 500. {'switchldIndex For category A with ServiceNames
1-port ATM IWU OC3 | Iportifindex use _
card and 1- port ATM voi amCircuitServiceNameEndpoint
pilndex Table
CS/DS3 card on the i "
B-STDX. veilndex} For category B without
The other endpoint on For category A or B ServiceName use
any card that is one of with ServiceNamesuse; | interworkingCircuitEndpointTable.
the following (category | {networkldindex Use
B): networkServiceName Etzrwgrk_ll_ gglcl rcuitServiceName
All cardson B-STDX Index napoint Taole.
except 1-port ATM .
IWU OC3 card and vp.llndex
1-port ATM CS/DS3 vcilndex}
card.
ATM-ATM Both endpointsexist on | For category B without Without ServiceName, use
cards that belong to ServiceNames use: interworkingCircuitEndpointTable.
gegory B as explained {'switchldIndex For category B with ServiceNames
ove.
|portlfIndex use NP .
] interworkingCircuitServiceName
vpilndex EndpointTable.
vcilndex}
For category B with
ServiceNames use:
{ networkldIndex
networkServiceName
Index
vpilndex
vcilndex}
FR-ATM Does not depend onthe | For the FR endpoint: For the ATM endpoint, use
Interworking ca:jd tthe of the { switchldindex interworkingCircuitEndpointTable
endpoints.
P Iportlfindex For the FR endpoint use
dicildindex} frCircuitEndpointTable
For the ATM endpoint:
{'switchldIndex
Iportlfindex
vpilndex
vcilndex}

46

NavisXtend Provisioning Server User’s Guide




Using the SNMP MIB
MIB Structure

Table4-2. Information Required for Creating Specific Circuits (Continued)

Circuit Type Card Type Information Tableto Use
Required
FR-ATM Does not depend onthe | For the ServiceName For the FR endpoint use
Interworking card type of the based FR endpoint: frCircuitServiceNameEndpoint
with either endpoints. { networkldindex Table
endpoint using ] ]
ServiceName networkServiceName For the ATM endpoint use
Index, interworkingCircuitServiceName
dicildindex} EndpointTable
For the ServiceName
based ATMendpoaint:

{ networkldIndex

networkServiceName
Index

vpilndex
vcilndex}

By segmenting information into separate tables based on technology or specific
features, the MIB improves performance of get-next operations because it minimizes
holes in matrices.

See the Provisioning Server MIB for details on the main groups of the MIB and the
indexing scheme for each group.

Row Aliasing

For objectsin the MIB that have attributes dispersed in severa tables, some attributes
are common to multiple tables. In the tables of the LPort and circuit groups, the
following attributes are common attributes:

* RowsStatus (seéRowsStatus Attribute” on paey-8)

* ModifyType (seéNumRetries Attribute” on pag4-9)
» Iportifindex (for tables in the LPort group only)

» CircuitNumber (for tables in the circuit group only)

* NumRetries (for tables in the circuit group only)
(see“NumRetries Attribute” on pag4-9)

The tables containing common attributes are considered linked. Thus, an operation on
a common attribute in one linked tabféeats the common attribute in the other linked
tables. For example, for a Frame Relay UNI DCE LPort, when the RowStatus attribute
is modified in one table (such as the Iportidintiexsrable), the value of that

NavisXtend Provisioning Server User’'s Guide 4-7



Using the SNMP MIB
MIB Structure

attribute is updated in other linked tables (such as the IportAdminTable and
IportFrTable). For a Frame Relay to Frame Relay circuit, when the RowStatus
attribute is modified in the frCircuitEndpointTable, the value of the attributeis
updated in the linked circuitCrossConnectTable.

Thisfeature, known as row aliasing, gives the user the flexibility to set an attribute in
only one table rather than set it in all related tables. Using row aiasing, the
Provisioning Server reflects the same value for a common attribute for the same row
across linked tables. Row aliasing assures that the status of arow and its common
attributes are always the same irrespective of the table.

The Iportlfindex attribute is an attribute that is not directly set by the user. It is
generated when the user sets the RowStatus attribute to the cresteAndWait state in a
trangdlation table (such asthe IportldindexTransTable). Once Iportlfindex is generated,
the attribute is updated in the linked L Port tables [portldindexTransTable,
IportAdminTable, and |portFrTable.

The user does not directly set the CircuitNumber attribute. It is generated when the
user generates circuit endpoints. Once CircuitNumber is generated, the attribute is
updated in the linked circuit tables frCircuitEndpointTable and
circuitCrossConnectTable.

Column Access Specifiers

Access specifiers for atable column are specified as Read-Only, Read-Write, or
Not-Accessible. Because SNM P does not support the category Create-Only, attributes
with this restriction are defined as Read-Write. These attributes are usually mandatory
attributes that you provide when creating an object. See the NavisXtend Provisioning
Server Object Attribute Definitions for attributes that are Create-Only.

For most tables, the index attributes are specified as Not-Accessible. Instead of
accessing these index columns directly, you use the Translation Tables to convert
required information into index attributes.

Additional Table Entries

Most table entries have the attributes RowStatus and Modify Type. These attributes are
used in set operations. Circuit table entries have the NumRetries attribute, which
specifiesretry behavior in the event of afailed attempt to add, delete, or modify a
circuit.

RowsStatus Attribute

The RowStatus attribute specifies the state of the table entry at a given time. Valid
values are as follows:

active (1) — Entry is active, such as when it has been created and definitions have
been made to it.

4-8 NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
MIB Structure

notlnService (2) — Entry is not in service, such as when modifications are being
made to it.

notReady (3) — Entry is under creation.

createAndWait (5) — Entry is being created, and is waiting for definitions to be
made to it. When you set the RowStatus attribute to 5, it gets set to 3.

destroy (6) — Entry has been removed.

You must include the RowStatus attribute when you:

* Create an object

* Modify an object by specifying the attribute modifications in multiple PDUs

» Destroy an object

ModifyType Attribute

The ModifyType attribute specifies the update method, as follows:

1 sends updates to both the network component and the database. The database is
updated only if the network component updates successfully.

4 sends updates to the database only.
5 sends updates to the database only and sets a flag indicating that the object is
out of synchronization in the database.

By default, updates are made to both the component and the database.

You must include the ModifyType attribute when you want an update to be made to
the database only. The setting applies only to the current request. Subsequent requests
revert to the default setting.

NumRetries Attribute

For requests to add, delete, or modify a circuit, use the NumRetries attribute to specify
the retry control.

By default, when the Provisioning Server receives a request to add, delete, or modify a
circuit, the server obtains card status for both circuit endpoints:

« If both cards are up, the Provisioning Server performs the add, delete, or modify
request as normal.

» If either card is down or is not reachable (for example, because of an SNMP
timeout), the server retries the request for card status as many times as specified
by the retry control:

NavisXtend Provisioning Server User’'s Guide 4-9



Using the SNMP MIB

MIB Structure

— Ifthe card becomes reachable and is up, the Provisioning Server performs the
circuit provisioning request.

— Once all retries have been issued, if the card is still not reachable or is still
down, the provisioning request is not performed.

The attribute has the default value 0 and the maximum value 5. The value applies to
requests at either endpoint: when a retry is sent to obtain the card status of one
endpoint, the number of retries decrements for either endpoint. Specify the
NumRetries attribute for each MIB request.

NumRetries is a common attribute to the following tables:
e interworkingCircuitEndpointTable

» atmCircuitEndpointTable

» frCircuitEndpointTable

» circuitCrossConnectTable

» atmCircuitBillingTable

» atmCircuitNdcTable

» interworkingCircuitServiceNameEndpointTable

« atmCircuitServiceNameEndpointTable

» frCircuitServiceNameEndpointTable

This control prevents circuits from being partially provisioned and the database from
becoming out of sync with the switch. However, it can increase the time it takes to
provision a circuit, depending on how many card status checks occur.

Keep in mind that this control affects the retry behavior of circuit provisioning
requests only. Other retry controls specified in cascadeview.cfg
(CV_SNMP_MAX_RETRIES, CV_SNMP_RETRY_INTERVAL, and
CV_SNMP_REQUEST_TIMEOUT) also apply to each request. Remember to
consider these other retry controls when specifying retry behavior of a circuit request.

4-10

NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

Using the MIB

This section describes how to use the MIB to lit, create, and modify a given
component on the network.

Using the SNMP Commands

The Provisioning Server supports the following SNMP commands:
get — Reads a single attribute of a row in a table.

get-next — Walks the MIB (similar to performing a ListContained command in
the API or CLI). The command is based on a lexicographical ordering of the
complete OID for various row instances. Thus, the command walks a table by
reading all row values of the first column before starting the second column.

set — Creates a new object, or modifies or deletes an existing object.

Command Error Table

The Command Errofable supplies information about any errors you encounter
during snmp_set operations to create or modify objects. This information is useful for
troubleshooting problems.

Entries in the table contain the following information:

« |IP address of the host machine where the MIB cBenetguest originated.
« The request ID of the request sent to the serve

e UDP port number of the client.

* Error code encountered when the server executed the command.

» Error message string.

e The OID of the attribute (column) that is in errd several attributes are in eryo
only the first one is reported.

e The timestamp at which the error occurred.

If several MIB clients use the same host, it can Hecdlt to distinguish the various
entries in the table based on IP addr&sdetermine uniqueness, use the request ID,
UDP port numbe or the timestamp of the entr

The Provisioning Server pges entries in the Command Eril@ble based on the
value of environment variable CV_SNMP_CMDERROR_CACHE_TIMBOUhe
default setting of this variable is 6000 seconds. For more information on this
environment variable, seé€ontrolling MIB Cache” on pag?2-19.

NavisXtend Provisioning Server User’'s Guide 4-11



Using the SNMP MIB

Using the MIB

SNMPv2 uses aricher set of error codes than SNMPv1. Because the bi-lingual agent
may be responding to SNMPv1 and SNMPv2 messages, it may need to map to the
appropriate error code. Table 4-4 is the table the agent currently uses to map an
SNMPv2 code to an SNMPv1 code.

Table4-3. Error Code Mapping from SNMPv2 to SNMPv1

SNM Pv2 SNM Pv1
noError noError
tooBig tooBig
genkErr genErr
wrongValue badValue
wrongEncoding badVaue
wrongType badValue
wrongLength badValue
inconsistentValue badValue
NoAccess noSuchName
notWritable noSuchName
noCresation noSuchName
inconsistentName noSuchName
resourceUnavailable genErr
commitFailed genErr
authorizationError noSuchName
undoFailed genErr

MIB Cache and Database Locking

The Provisioning Server implements a MIB cache that stores datain memory for a
fixed time period. The server uses the cache to optimize performance of get-next
requests and to store data to be committed to the database during transactions
involving multiple PDUs. The caching behavior varies depending on which operation
is being performed. For details, séw Creation”, “Row Modification”and
“get-next Operationslater in this section.

4-12

NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

The abject locking behavior for MIB objectsin the database differs from the locking
behavior of the Provisioning Server API, CLI, or NavisCore. For these interfaces, the
steps associated with locking are transparent to the user. When an object is created or
modified, its parent object gets locked. The user specifies all the information needed
to create or maodify the object in one request. Once the request is compl ete, the parent
gets unlocked.

By contrast, in the case of the MIB, the information needed to create or modify an
object may not be availablein one PDU. Asaresult, the locks in the database must be
held for alonger time. Thus, the steps associated with locking are not transparent to
the user.

> If the API, CLI, or NavisCore makes modifications to an object in the database
at the same time that the abject is present in MIB cache during a get or get-next
reguest, the MIB valuesin cache become stale.

Row Creation
When an object is created, anew row is created in the database. During a successful
row creation, you perform the following steps:

1. Initiate the transaction by setting the RowStatus attribute to the createAndWait
state.

The parent object gets locked.

2. Issue one or more snmp_set requests to assign values to other attributes of the
row.

The attribute values are stored in MIB cache.
3. Complete the transaction by setting the RowStatus attribute to the active state.

When no errors are encountered, the changes are committed to the switch and to
the database, the row is flushed from MIB cache, and the lock is released.

If an error is encountered, the row remains in cache and the lock remains in effect.
You can correct the error by modifying the contents of the cache (by returning to step
2). Once you have corrected the error and set the RowStatus to the active state, the
row creation is completed, the row is flushed from MIB cache, and the lock is
released. Note that it can take several iterations before al the errors are corrected.

NavisXtend Provisioning Server User’'s Guide 4-13



Using the SNMP MIB

Using the MIB

If auser initiates but does not complete a transaction to create an object, the
partially-created row remainsin MIB cache for the amount of time specified by the
environment variable CV_SNMP_LOCK_TIMEOQOUT. And, the parent object remains
locked for the time specified by the CV_SNMP_LOCK_TIMEOUT value, preventing
other users from accessing the parent object. Thus, users should make sure to
complete all transactions. Oncethe CV_SNMP_LOCK_TIMEOUT timer expires, the
partialy-created row is flushed out of cache and the lock is removed.

For more information on this environment variable, ‘s&entrolling Object Locking”
on pag 2-19

Row Modification

When an object is modified, a row is modified in the database. Before modifying an
object, perform an snmp_get request on the RowStatus attribute to check if another
user is currently accessing the gnif the entry is in use, retry your request fate

Row modification can be performed with or without modifying the RowStatus
attribute.

PDU Modification without Modifying RowStatus

Simple modifications do not require you to set the RowStatus to the notinService
state; the RowStatus remains Active through the transaction. When you do not have to
modify the RowStatus attribute, the locking and unlocking of the object becomes
transparent.

If you want to modify only a few attributes, you can issue one PDU containing the
appropriate values for the varbindg, @ou can issue a PDU multiple times.

To maximize MIB éficiency, you should specify all varbinds in one PDU
whenever possible.

PDU Modification by Modifying RowStatus

With complex modifications involving a number of attributes, you can issue multiple
PDUs containing the appropriate values for the varbinds. Howeveaximize MIB
efficiency, you should specify all varbinds in one PDU whenever possible.

Because of attribute dependencies, you should first set the RowStatus to the
notinService state before making the modifications.

During a complex modification, you perform the following steps:

1. Issue an snmp_get request on the RowStatus attribute to make sure that no other
user is currently accessing the object.

2. Initiate the transaction by setting the RowStatus attribute to the notinService state.

The object gets locked.

4-14

NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

3. Issue one or more snmp_set requests to assign values to other attributes of this
row.

The attribute values are stored in MIB cache.
4. Complete the transaction by setting the RowStatus attribute to the active state.

When no errors are encountered, the changes are committed to the switch and to
the database, and the lock is released.

If an error is encountered during modification, the lock remainsin effect. You can
correct the error by modifying the contents of the cache (by returning to step 3). Once
you have corrected the error and set the RowStatus to the active state, the row creation
is completed and the lock is released.

If auser initiates (but does not complete) atransaction to modify an object, the
partially-modified row remainsin MIB cache for the amount of time specified by the
environment variable CV_SNMP_LOCK_TIMEOUT. And, the abject remains locked
for the time specified by the CV_SNMP_LOCK_TIMEOQOUT value, preventing other
users from accessing the object. Thus, users should make sure to complete all
transactions. Oncethe CV_SNMP_LOCK_TIMEOUT timer expires, the
partially-created row is flushed out of cache and the lock is removed.

get-next Operations

You can perform a get-next request starting at any location in the MIB (including the
top of the MIB), at any group of the MIB, any column of atable, or a specific column
of an instance.

get-next requests are performance-intensive operations. The Provisioning Server uses
MIB cache to cache objects (rows), thus optimizing performance of get-next requests.
When the objects areinitially loaded into cache from the database, the responseto a
get-next regquest may be slow. However, once the caching is complete, the response
becomes significantly faster.

Be aware that using get-next operations on tables with many entries in the database
may take some time to retrieve. These operations can significantly affect performance
of the server. Although a get-next operation will not block other requests, it can slow
the response to the other requests.

The Provisioning Server purges entriesin MIB cache resulting from a get-next
operation based on the value of environment variable
CV_SNMP_ROWENTRY_TIMEOUT. The default setting of this variable is 900
seconds. For more information on this environment variable' Gegrolling MIB
Cache” on pag2-19.

NavisXtend Provisioning Server User’'s Guide 4-15



Using the SNMP MIB
Using the MIB

Specifying the Object Identifier

When you want to access a specific variable from aMIB group, you enter an OID that
uses the following format:

{Provisioning Server OD}.{G oup}.{Sub-group}.{Table}.{Entry}.{Col um}. {I ndex}

Complex objects, such as L Ports and circuits, require a sub-group; simple objects do
not.

The Provisioning Server OID is:
1.3.6.1.4.1.277.9.1

where the last term in the OID represents the version number of the MIB.

Example 1: get Command

To find out what type of card islocated in aparticular ot of a switch, use the
following steps to determine the OID of the command you want to issue:

1. Determine the group value by locating the Card Group in the beginning of the
MIB document. The following line indicates that the group valueis 4

card OBJECT IDENTIFIER ::= { psM bRev2 4 }
Cards are simple objects that do not require a sub-group name.

2. Determine the Table value by locating the Table index, cardTable. Theline
::={ card 1} indicates that the Table valueis 1:

cardTabl e OBJECT- TYPE
SYNTAX SEQUENCE OF CardEntry
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON
"Tabl e representing information about all cards in the network"
o= { card 1}
3. Determine the Entry value by locating the Entry index, cardEntry. Theline
::={ cardTable 1} indicates that the Entry valueis 1.
cardEntry OBJECT- TYPE
SYNTAX CardEntry
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON
"Entry representing information about one card"

INDEX { switchldlndex, slotldlndex }
::={ cardTable 1}

4. Determine the Column value for the MIB variable you want to access. To retrieve

a card’s type, you need to access the variedléDefinedType. The line
::={ cardEntry 1} indicates that the Column valuelis

5. Determine the Index items by locating them in the cardEntry variable you located
in step 3. The linéNDEX { switchldindex, dotldlndex } indicates the index
items you need to provide to complete this command.

4-16 NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

The switchldl ndex represents the | P address of the switch. The dlotldi ndex
represents the slot where the card islocated. If the switch that contains the card
has | P address 152.148.10.19 and the card for which you are requesting
information isin slot 8, then the index is 152.148.10.19.8.

6. Enter the following command to retrieve the card type for the card (this example
uses MIT SNMP Tools command syntax):

snnpget -h <server-machi ne- name> - p<server-port> -c<conmunity-name>
1.3.6.1.4.1.277.9.1.4.1.1.1.152.148. 10.19. 8

where { Provisioning Server OID = 1.3.6.1.4.1.277.9.1} { Group = 4} .
{Table = 1} {Entry = 1} .{ Column = 1} .{ Index = 152.148.10.19.8}

The system responds by displaying the command as the full MIB tree index,
1.3.6.1.4.1.277.9.1.4.1.1.1.152.148.10.19.8, and retrieves an integer that
represents the type of the card. See the cardDefinedType variable to interpret this
integer.

Example 2: get-next Command

To retrieve the Admin status for al LPorts on a switch, use the following stepsto
determine the OID of the command you want to issue:

1. Determine the group value by locating the L Port Group in the beginning of the
MIB document. The following line indicates that the group valueis 6:

| port OBJECT IDENTIFIER ::={ psMbRev2 6 }

2. Admin status is a configuration attribute. To determine the Sub-group value,
locate the L PortConfiguration table in the beginning of the MIB document. The
following line indicates that the Sub-group valueis 2.

| port Configurati onOBJECT IDENTIFIER ::={ Iport 2}

3. Determine the Table value by locating the Table index, IportAdminTable. The
line::={lportConfiguration 1} indicates that the Table value is 1:

| port Adm nTabl e OBJECT- TYPE
SYNTAX SEQUENCE OF LportAdmi nEntry
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON "List of logical port common attribute entries."
:={ IportConfiguration 1}

4. Determine the Entry value by locating the Entry index, I[portAdminEntry. The
line::={lportAdminTable 1} indicates that the Entry valueis 1.

| port Admi nEntry OBJECT- TYPE
SYNTAX Lport Admi nEntry
MAX- ACCESS not - accessi bl e
STATUS current
DESCRI PTI ON
"Logi cal Port Configuration Entry"
INDEX { switchldlndex, Iportlflndex }
c:= { I portAdmi nTable 1}

NavisXtend Provisioning Server User’'s Guide 4-17



Using the SNMP MIB

Using the MIB

5. Determine the Column value for the MIB variable you want to access. To retrieve
the Admin status, you need to access the variable IportAdminAdminStatus. The
line::={ IportAdminEntry 19} indicates that the Column valueis 19:

| port Adm nAdmi nSt at us OBJECT- TYPE
SYNTAX | NTEGER {

up(1),
down( 2),
testing(3)

}
MAX- ACCESS read-wite

STATUS current
DESCRI PTI ON "LPort Administrative Status. This attribute is mandatory
for |port creation”
= { | portAdm nEntry 19}

6. Enter the following command to request Admin status of al LPort instancesin the

table (this example uses MIT SNMP Tools command syntax):

snnpget -h <server-machi ne- name> - p<server-port> -c<conmunity-name>
1.3.6.1.4.1.277.9.1.6.2.1.1.19

where { Provisioning Server OID = 1.3.6.1.4.1.277.9.1} { Group = 6} .

{ Sub-group = 2} { Table = 1} .{ Entry = 1} .{ Column = 19}

Index items are omitted, because the request is for Admin status of all LPort
instances in the table.

For each L Port instance in the network, the system responds by displaying the
command as the full MIB treeindex, 1.3.6.1.4.1.277.9.1.6.2.1.1.19, and retrieves
an integer that represents the Admin status of the LPort. If the valueis 1, the
Admin Status of an LPort isup; if the value is 2, the Admin Status is down.

The following examples illustrate how to use the Provisioning Server MIB to create,
modify, and delete objects. Several examplesinvolve ATM objects. You would use a
similar approach to manage Frame Relay objects, except that you access different
tablesin the MIB. For example, to manage a Frame Relay L Port, you use the
appropriate LPort Tranglation Table, the |portAdminTable, and the IportFrTable.

Example 3: set Command to Create an ATM LPort

To create an ATM LPort, you use the |portldindexTransTable to map between the
card, PPort, and L Port ID and the L Port interface number. You must specify the L Port
ID and request an interface number for it.

To create an ATM L Port, use the following steps:

1. Issueansnmp_set request to obtain an L Port interface number based on the L Port
ID. Set the IportldindexTransRowStatus to the createAndWait state, specifying
the switchldindex 1.1.1.1, dotidindex 7, pportldindex 8, and Iportldindex 1.

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

4-18

NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

2. Issue an snmp_get request to obtain the interface number (Iportiflndex) that will
be used to create a new entry in the |portAdminTable and the |portAtmTable.
Issue the request on the IportldindexTransl findex, specifying the switchldindex,
dotldindex, pportldindex, and Iportldindex values.

The SNMP agent processes the request and returns an snmp_getResponse
(SNMPv1) or an snmp_Response (SNMPv2) with the Iportlfindex 7.

3. Issueaseriesof snmp_set requests that assign values to the attributes of the L Port
in both the |portAdminTable and the IportAtmTable.

The SNMP agent processes the requests by storing the valuesin MIB cache. Then,
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

4. |ssuean snmp_set request to commit the new entry. Set the |portAdminRowStatus
to the active state, specifying the switchldindex 1.1.1.1 and the Iportlfindex 7.
This command automatically sets the IportldindexTransRowStatus to the active
state.

The SNMP agent processes the request by committing the new entry to the switch
and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPVv2) to the MIB client.

Figure 4-1 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the L Port.

> Figure 4-1 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in

messages from the agent to the MIB client will differ. For example, when avl
agent sends a message beginning with snmp_setResponse, av2 agent uses
snmp_Response. When avl agent sends snmp_getResponse, av2 agent sends
snmp_Response.

NavisXtend Provisioning Server User’'s Guide 4-19



Using the SNMP MIB
Using the MIB

MIB Client SNMP Agent

snmp_set IportldindexTransRowStatus.1.1.1.1.7.8.1 == createAndWait

>

snmp_setResponse IportldindexTransRowStatus.1.1.1.1.7.8.1 == createAndWait

snmp_get IportldindexTranslifindex.1.1.1.1.7.8.1

®

)

snmp_getResponse IportldindexTranslfindex.1.1.1.1.7.8.1 ==

® .

snmp_set (setting attributes of IportAdminTable and IportAtmTable)

snmp_setResponse == noError

A

snmp_set IportAdminRowStatus.1.1.1.1.7 == active

}
snmp_setResponse IportAdminRowStatus.1.1.1.1.7 == active commit
- /
NavisCore
Database

Ascend Switch

Figure4-1. Creatingan ATM LPort

4-20 NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

Example 4: set command to Modify an ATM LPort
You can modify an LPort using either of the following methods:
e Specifying the interface number of the LPort

« Specifying the LPort’s VPI/VCI pair

Before modiying any attribute, perform an snmp_get request on the RowStatus
attribute to check if another user is currently accessing the entry. If the entry is in use,
retry your request later.

Before modifying the LPort attributes, set the IportldindexTransRowStatus to the
notinService state. You can skip this step if you specify the attribute modifications in
a single PDU.

To modify attributes of an ATM LPort for which you do not know the interface
number, use the following steps:

1. Issue an snmp_set request to set the LPort to the notinService state, based on the
LPort ID. Set the IportldindexTransRowStatus to the notInService state,
specifying the switchldindex 1.1.1.1, slotldindex 7, pportldindex 8, and
Iportidindex 1.

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

2. Issue an snmp_get request to obtain the interface number (Iportifindex) that will
be used to modify the entry in the IportAdminTable and the IportAtmTable. Issue
the request on the IportldindexTranslfindex, specifying the switchldindex,
slotldindex, pportldindex, and Iportldindex values.

The SNMP agent processes the request and returns an snmp_getResponse
(SNMPv1) or an snmp_Response (SNMPv2) with the Iportlfindex 7.

3. Issue a series of snmp_set requests that modify values of the attributes of the
LPort in both the IportAdminTable and the IportAtmTable.

The SNMP agent processes the requests by storing the values in MIB cache. Then,
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

4. Issue an snmp_set request to commit the modified entry. Set the
IportAdminRowsStatus to the active state, specifying the switchidindex 1.1.1.1
and the Iportlfindex 7. This command automatically sets the
IportldindexTransRowStatus to the active state.

The SNMP agent processes the request by committing the modified entry to the
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2).

NavisXtend Provisioning Server User’'s Guide 4-21



Using the SNMP MIB

Using the MIB

Figure 4-2 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when modifying attributes of the L Port.

Figure 4-2 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when avl
agent sends a message beginning with snnp_set Response, av2 agent uses
snnp_Response. When avl agent sends snnp_get Response, av2 agent
sends snnp_Response.

MIB Client SNMP Agent

0 snmp_set IportldindexTransRowStatus.1.1.1.1.7.8.1 == notInService

-

>

snmp_setResponse IportidindexTransRowStatus.1.1.1.1.7.8.1 == notInService

e snmp_get IportldindexTranslfindex.1.1.1.1.7.8.1

-

>

snmp_getResponse IportldindexTranslfindex.1.1.1.1.7.8.1 ==

e snmp_set (setting attributes of IportAdminTable and IportAtmTable)

>

snmp_setResponse == noError

-«

e snmp_set IportAdminRowStatus.1.1.1.1.7 == active

>
snmp_setResponse IportAdminRowStatus.1.1.1.1.7 == active commit
-« /
NavisCore
. Database
Ascend Switch
Figure4-2. Modifyingan ATM LPort
4-22 NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

Example 5: set Command to Delete an ATM LPort
You can delete an L Port using either of the following methods:
e Specifying the interface number of the LPort

e Specifying the LPort ID

Before deleting an object, perform an snmp_get request on the RowStatus attribute to
check if another user is currently accessing the object. If the object is in use, retry your
request later.

To delete an ATM LPort for which you do not know the interface number, use the
following step:

1. Issue an snmp_set request to delete an LPort based on the LPort ID. Set the
IportldindexTransRowStatus to the destroy state, specifying the switchldindex
1.1.1.1, slotldindex 7, pportldindex 8, and Iportldindex 1. (As an alternative, you
could set the IportAdminRowStatus to the destroy state, as these attributes are
linked by aliasing.)

The SNMP agent processes the request by committing the modified entry to the
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2).

Figure 4-3shows the request-response message flow between the MIB client, the
SNMP agent, and the database when deleting the LPort.

> Figure 4-3uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in

messages from the agent to the MIB client will differ. For example, when h v1
agent sends a message beginning wiitlp_set Response, a v2 agent sends
snnp_Response.

NavisXtend Provisioning Server User’'s Guide 4-23



Using the SNMP MIB

Using the MIB

MIB Client SNMP Agent
o snmp_set IportldindexTransRowStatus.1.1.1.1.7.8.1 == destroy
'
commit

snmp_setResponse IportldindexTransRowStatus.1.1.1.1.7.8.1 == destroy

NavisCore
Database

Ascend Switch

Figure4-3. Deletingan ATM LPort Using its VPI/VCI Pair

To delete an ATM L Port for which you know the interface number, use the following
step:
1. Issue an snmp_set request to delete an LPort based on the LPort’s interface

number. Set the IportAdminRowStatus to the destroy state, specifying the
switchldindex 1.1.1.1 and the Iportlfindex 7.

The SNMP agent processes the request by committing the modified entry to the
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPV2).

Figure 4-4shows the request-response message flow between the MIB client, the
SNMP agent, and the database when deleting the LPort.

Figure 4-4uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when h v1
agent sends a message beginning wiitlp_set Response, a v2 agent sends
snnp_Response.

NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

MIB Client SNMP Agent

o snmp_set IportAdminRowStatus.1.1.1.1.7 == destroy

commit
snmp_setResponse IportAdminRowStatus.1.1.1.1.7 == destroy

NavisCore
Database

Ascend Switch

Figure4-4. Deletingan ATM LPort Using its Interface Number

Example 6: set Command to Create an ATM Circuit

To create an ATM circuit, you define the two circuit endpoints using the
atmCircuitEndpointTable and establish their interconnection using the
circuitCrossConnectTable (see Table 4-2).

To create an ATM circuit, use the following steps:

1. Issue an snmp_set request to define the two circuit endpoints and establish their
interconnection. Set the atmCircuitEndpointRowStatus to the createAndWait
state, specifying both endpoint 1 (switchldindex 1.1.1.1, Iportlfindex 10,
vpildindex 8, and vcildindex 34) and endpoint 2 (switchldindex 2.2.2.2,
[portifldindex 4, vpildindex 4, and vcildindex 54) in asingle PDU.

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

2. Issueaseriesof snmp_set requeststhat assign values to the attributes of the circuit
endpoints in the atmCircuitEndpointTable.

The SNMP agent processes the requests by storing the valuesin MIB cache. Then,
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

3. Issuean snmp_get request to obtain the circuit number that will be used to create a
new entry in the circuitCrossConnectTable. Specify the switchldindex,
IportIfindex, vpildindex, and vcildindex values for one of the endpoints (the
circuit number is the same for both endpoints).

NavisXtend Provisioning Server User’'s Guide 4-25



Using the SNMP MIB
Using the MIB

The SNMP agent processes the request and returns an snmp_getResponse
(SNMPv1) or an snmp_Response (SNMPv2) with the
amCircuitEndpointCircuitNumber 10.

4. Issueaseriesof snmp_set requeststhat assign valuesto the attributes of the circuit
interconnection in the circuitCrossConnectTable.

The SNMP agent processes the requests by storing the valuesin MIB cache. Then,
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

5. Issue an snmp_set request to commit the new entry. Set the
circuitCrossConnectRowStatus to the active state, specifying the
atmCircuitEndpointCircuitNumber 10. This command automatically setsthe
atmCircuitEndpointRowStatus of the two endpoints to the active state.

The SNMP agent processes the request by committing the new entry to the switch
and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPv2).

Figure 4-5 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the ATM circuit.

> Figure 4-5 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in

messages from the agent to the MIB client will differ. For example, when avl
agent sends a message beginning with snnp_set Response, av2 agent sends
snnp_Response. When avl agent sends snnp_get Response, av2 agent
sends snnp_Response.

4-26 NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB

Using the MIB
MIB Client SNMP Agent
snmp_set atmCircuitEndpointRowStatus.1.1.1.1.10.8.34 == createAndWait
0 atmCircuitEndpointRowStatus.2.2.2.2.4.4.54 == createAndWait -
snmp_setResponse atmCircuitEndpointRowStatus.1.1.1.1.10.8.34 == createAndWait
- atmCircuitEndpointRowStatus.2.2.2.2.4.4.54 == createAndWait
snmp_set (setting attributes of atmCircuitEndpointTable for both endpoints)
(2 >
snmp_setResponse == noError
-«
snmp_get atmCircuitEndpointCircuitNumber.1.1.1.1.10.8.34
© >
snmp_getResponse atmCircuitEndpointCircuitNumber.1.1.1.1.10.8.34 == 10
-«
9 snmp_set (setting attributes of circuitCrossConnectTable)
snmp_setResponse == noError
-
snmp_set circuitCrossConnectRowStatus.10 == active
y
snmp_setResponse circuitCrossConnectRowStatus.10 == active commit
€

NavisCore
Database

Ascend Switch

Figure4-5. Creatingan ATM Circuit

NavisXtend Provisioning Server User’'s Guide 4-27



Using the SNMP MIB

Using the MIB

Example 7: set Command to Modify an ATM Circuit
You can modify acircuit using either of the following methods:

e Specifying the circuit number

e Specifying the circuit's endpoints

Before performing a modification on any attribute, perform an snmp_get request on
the RowStatus attribute to check if another user is currently accessing the entry. If the
entry is in use, retry your request later.

Before modifying the circuit attributes, set the circuitCrossConnectRowStatus to the
notinService state. You can skip this step if you specify the attribute modifications in
a single PDU.

To modify attributes of a circuit, use the following steps:

1. Issue an snmp_get request to obtain the circuit number in the appropriate Circuit
Endpoint Table. Specify the switch IP address, Iportifindex, vpildindex, and
vcildindex values for one of the endpoints (the circuit number is the same for both
endpoints).

If you know the circuit number, skip to step 2.

2. Issue an snmp_set request to set the circuit to the notinService state, based on the
circuit number. Set the circuitCrossConnectRowStatus to the notinService state,
specifying the circuit number 10.

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

3. Issue a series of snmp_set requests that modify values of the attributes of the
circuit. Modifications are made to the circuitCrossConnectTable and the
atmCircuitEndpointTable.

The SNMP agent processes the requests by storing the values in MIB cache. Then,
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPV2).

4. Issue an snmp_set request to commit the modified entry. Set the
circuitCrossConnectRowStatus to the active state, specifying the circuit number
10. This command automatically sets the atmCircuitEndpointRowStatus to the
active state.

The SNMP agent processes the request by committing the modified entry to the
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPV2).

4-28

NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

Figure 4-6 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when modifying attributes of the circuit.

> Figure 4-6 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in

messages from the agent to the MIB client will differ. For example, when avl
agent sends a message beginning with snnp_set Response, av2 agent sends
snnp_Response.

MIB Client SNMP Agent
9 snmp_get (obtaining the circuit number in the appropriate Circuit Endpoint Table)
>
9 snmp_set circuitCrossConnectRowStatus.10 == notInService
'

snmp_setResponse circuitCrossConnectRowStatus.10 == notinService

snmp_set (setting attributes of atmCircuitEndpointTable and/or
e circuitCrossConnectTable)

)

snmp_setResponse == noError

e snmp_set circuitCrossConnectRowStatus.10 == active

commit

snmp_setResponse circuitCrossConnectRowStatus.10 == active

NavisCore
Ascend Switch Database

Figure4-6. Modifyingan ATM Circuit Using its Circuit Number

NavisXtend Provisioning Server User’'s Guide 4-29



Using the SNMP MIB

Using the MIB

Example 8: set Command to Delete an ATM Circuit
You can delete a circuit using either of the following methods:

e Specifying the circuit number

e Specifying the circuit's endpoints

Before deleting an object, perform an snmp_get request on the RowStatus attribute to
check if another user is currently accessing the object. If the object is in use, retry your
request later.

To delete an ATM circuit for which you know the circuit number, use the following
step:
1. Issue an snmp_set request to delete a circuit based on the circuit number. Set the

circuitCrossConnectRowsStatus to the destroy state, specifying the circuit number
10.

The SNMP agent processes the request by committing the modified entry to the
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPvV2).

Figure 4-7shows the request-response message flow between the MIB client, the
SNMP agent, and the database when deleting the circuit.

Figure 4-7uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when a v1
agent sends a message beginning wvitlinp_set Response, a v2 agent sends
snnp_Response.

4-30

NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB

Using the MIB
MIB Client SNMP Agent
o snmp_set circuitCrossConnectRowStatus.10 == destroy
commit

snmp_setResponse circuitCrossConnectRowStatus.10 == destroy

NavisCore
Database

Ascend Switch

Figure4-7. Deletingan ATM Circuit Using its Circuit Number

Example 9: set Command to Create a VPN Indexed by Name

To specify a string value when you create an object, you specify the length of the
string and the ASCI| representation of each of the charactersin the string.

To create a VPN indexed by name, use the following steps:

1. Issue an snmp_set request to set the VPN name “abc”. Set the vpnRowStatus to
the createAndWait state, specifying the networkldindex 100.100.0.0, the length of
the name (3 characters), and the ASCII values of each letter in the name (97, 98,
and 99, respectively).

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

2. Issue a series of snmp_set requests that assign values to the attributes of the VPN
in the vpnTable.

The SNMP agent processes the requests by storing the values in MIB cache. Then,
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

3. Issue an snmp_set request to commit the new entry. Set the vpnRowStatus to the
active state, specifying the networkldindex 100.100.0.0, the length of the name,
and the ASCII values of each letter in the name.

The SNMP agent processes the request by committing the new entry to the switch
and to the NavisCore database.

NavisXtend Provisioning Server User’'s Guide 4-31



Using the SNMP MIB

Using the MIB

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPV2) to the MIB client.

Figure 4-8 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the VPN.

Figure 4-8 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in
messages from the agent to the MIB client will differ. For example, when avl
agent sends a message beginning with snnp_set Response, av2 agent sends
snnp_Response.

MIB Client SNMP Agent

o snmp_set vpnRowStatus.100.100.0.0.3.97.98.99 == createAndWait

-

snmp_setResponse vpnRowStatus.100.100.0.0.3.97.98.99 == createAndWait

9 snmp_set (setting attributes of vpnTable)

snmp_setResponse == noError

-

9 snmp_set vpnRowStatus.100.100.0.0.3.97.98.99 == active

snmp_setResponse vpnRowStatus.100.100.0.0.3.97.98.99 == active commit
€ /
NavisCore
. Database
Ascend Switch
Figure4-8. Creatinga VPN Indexed by Name
4-32 NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

Example 10: set Command to Create a ServiceName Indexed by
Name

To specify a string value when you create an object, you specify the length of the
string and the ASCII representation of each of the charactersin the string.

When you create a ServiceName, the first PDU should contain the
network ServiceNameRowStatus as the first varbind and the
networkServiceNamePrimaryL Port as the second varbind.

To create a ServiceName indexed by the name “abc”, use the following steps:

1. Issue an snmp_set request to define the primary ServiceName binding. In a single
PDU, set the networkServiceNameRowStatus to the createAndWait state and set
the networkServiceNamePrimaryLPort to the objectld (IportAdminifindex) of the
LPort. Specify the networkldindex 100.100.0.0, the length of the name (3
characters), and the ASCII values of each letter in the name (97, 98, and 99,
respectively).

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

2. Issue a series of snmp_set requests that assign values to the attributes of the
ServiceName in the networkServiceNameTable.

> Do not set the networkServiceNameBackupLPort attribute in an add requgst.
Otherwise, an error will be reported when the new entry is committed to t
database.

The SNMP agent processes the requests by storing the values in MIB cache. Then,
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

3. Issue an snmp_set request to commit the new entry. Set the
networkServiceNameRowStatus to the active state, specifying the
networkldindex 100.100.0.0, the length of the name, and the ASCII values of
each letter in the name.

The SNMP agent processes the request by committing the new entry to the switch
and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPV2) to the MIB client.

Figure 4-9shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the ServiceName binding.

NavisXtend Provisioning Server User’'s Guide 4-33



Using the SNMP MIB
Using the MIB

> Figure 4-9 uses SNMPv1 syntax. If you are using SNMPv2, the syntax used in

messages from the agent to the MIB client will differ. For example, when avl
agent sends a message beginning with snnp_set Response, av2 agent sends
snnp_Response.

MIB Client SNMP Agent

o snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == createAndWait

-
snmp_set networkServiceNamePrimaryLPort.100.100.0.0.3.97.98.99 == IportAdminlfindex.10

snmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == createAndWait
-

snmp_setResponse networkServiceNamePrimaryLPort.100.100.0.0.3.97.98.99 == IportAdminlIfindex.10

snmp_set (setting attributes of networkServiceNameTable)

>

snmp_setResponse == noError
-

e snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active

snmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active commit

-

NavisCore
Database

Ascend Switch

Figure4-9. Creating a ServiceName Indexed by Name

4-34 NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

Example 11: set command to Modify a ServiceName Indexed by
Name

Before performing a modification on any attribute, perform an snmp_get request on
the RowStatus attribute to check if another user is currently accessing the entry. If the
entry isin use, retry your request later.

Before modifying the ServiceName attributes, set the network ServiceNameRowStatus
to the notInService state. You can skip this step if you specify the attribute
modificationsin asingle PDU.

To modify attributes of a ServiceName indexed by the name “abc”, use the following
steps:

1. Issue an snmp_set request to set the ServiceName “abc” to the notinService state.
Set the networkServiceNameRowStatus to the notinService state, specifying the
networkldindex 100.100.0.0, the length of the name (3 characters), and the ASCII
values of each letter in the name (97, 98, and 99, respectively).

The SNMP agent processes the request and returns a successful
snmp_setResponse (SNMPv1) or an snmp_Response (SNMPv2).

2. Issue a series of snmp_set requests that assign values to the attributes of the
ServiceName in the networkServiceNameTable.

The SNMP agent processes the requests by storing the values in MIB cache. Then,
the agent returns a successful snmp_setResponse (SNMPv1) or an
snmp_Response (SNMPv2).

3. Issue an snmp_set request to commit the new entry. Set the
networkServiceNameRowStatus to the active state, specifying the
networkldindex 100.100.0.0, the length of the name, and the ASCII values of
each letter in the name.

The SNMP agent processes the request by committing the new entry to the switch
and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPV2) to the MIB client.

Figure 4-10shows the request-response message flow between the MIB client, the
SNMP agent, and the database when modifying the ServiceName binding.

> Figure 4-10uses SNMPv1 syntax. If you are using SNMPv2, the syntax usgd in

messages from the agent to the MIB client will differ. For example, when h v1
agent sends a message beginning wuitlnp_set Response, a v2 agent sends
snnp_Response.

NavisXtend Provisioning Server User’'s Guide 4-35



Using the SNMP MIB
Using the MIB

MIB Client SNMP Agent

o snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == notInService

snmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == notInService
-

e snmp_set (setting attributes of networkServiceNameTable)

>

snmp_setResponse == noError

-€

e snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active

!
snmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active commit
- /

NavisCore
Database

Ascend Switch

Figure4-10. Modifying a ServiceName Indexed by Name

4-36 NavisXtend Provisioning Server User’s Guide



Using the SNMP MIB
Using the MIB

Example 12: set command to Delete a ServiceName Indexed by
Name

Before deleting an object, perform an snmp_get request on the RowStatus attribute to
check if another user is currently accessing the object. If the object isin use, retry your
reguest later.

To delete a ServiceName indexed by the name “abc”, use the following steps:

1. Issue an snmp_set request to set the ServiceName “abc” to the destroy state. Set
the networkServiceNameRowStatus to the destroy state, specifying the
networkldindex 100.100.0.0, the length of the name (3 characters), and the ASCII
values of each letter in the name (97, 98, and 99, respectively).

The SNMP agent processes the request by committing the modified entry to the
switch and to the NavisCore database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse (SNMPv1) or an snmp_Response
(SNMPvV2).

Figure 4-11shows the request-response message flow between the MIB client, the
SNMP agent, and the database when deleting the ServiceName.

> Figure 4-11uses SNMPv1 syntax. If you are using SNMPv2, the syntax uskd in

messages from the agent to the MIB client will differ. For example, when h v1
agent sends a message beginning wiitlhp_set Response, a v2 agent sends
snnp_Response.

NavisXtend Provisioning Server User’'s Guide 4-37



Using the SNMP MIB

Using the MIB
MIB Client SNMP Agent
0 snmp_set networkServiceNaemRowStatus.100.100.0.0.3.97.98.99 == destroy
)
commit

snmp_setResponse == noError

|

NavisCore
Database

Ascend Switch

Figure4-11. Deleting a ServiceName Indexed by Name

4-38 NavisXtend Provisioning Server User’s Guide



Index

A

API usage

recompiling an existing application 2-28

writing a C program 1-49, 2-27

writing a C++ program 1-50, 2-27
Application Toolkit

installation instructions 2-3 to 2-9

installed files 2-10 to 2-11

overview 1-3to 1-4

post-installation tasks 2-7 to 2-9

recompiling an existing application 2-28

un-installation instructions 2-27

upgrading an existing application 2-28

writing a provisioning application 2-27
Aps

object ID 1-18

operations and limitations 1-21
Argument list

for the CLI 1-41

inC 1-41

inC++ 1-41

methods for specifying variable arguments 1-7,

1-49

AssignedSvcSecScn

object ID 1-18

operations and limitations 1-21
Asynchronous functions 1-4 to 1-7
Asynchronous Transfer Mode. See ATM
ATM Network Interworking for Frame Relay NNI

object ID 1-19
ATM Transport for FR NNI LPorts object ID 1-19
ATM Virtual UNI LPorts object ID 1-19
See Argument list

Attributes, how represented for the CLI 3-3
Automatic Protection Switching. See Aps

C

argument list 1-41

interface for API functions 1-3

writing a program 1-49, 2-27
C++

argument list 1-41

interface for API functions 1-3

writing a program 1-50, 2-27
Cache, used to store MIB datain memory 2-19,

4-12to 4-15

Card

object ID 1-19

operations and limitations 1-21
Card status checking

disabling 2-20
CardTca

object ID 1-18

operations and limitations 1-21
Channel

object ID 1-19

operations and limitations 1-22
ChanPerformanceM onitor

object ID 1-18

operations and limitations 1-22
Circuit

DLCI for Frame Relay circuits 1-19

object ID 1-19

object ID for ATM Network Interworking for

Frame Relay NNI 1-19

operations and limitations 1-23

VCI for ATM circuits 1-19

VPI for ATM circuits 1-19
Class B addressing 1-49

NavisXtend Provisioning Server User's Guide

Index-1



Index

CLI
argument list 1-41
commands 3-5 to 3-27
controlling SNMP parameters 2-14
defined 1-3, 3-1
enclosing strings in quotes 3-3
examples 3-30 to 3-42
identifying the Provisioning Server to the CLI
2-12
installed files 2-10
specifying abbreviated attribute IDs 3-3
specifying abbreviated enumerated attribute val-
ues 3-3
specifying modification type 2-12
specifying retry behavior 2-13
specifying security settings 2-14
stopping and restarting 2-22
testing the CLI 2-9
troubleshooting problems 2-22 to 2-26
usage 3-1to 3-4
writing a provisioning script 2-27
Client include files2-10to 2-11
Client libraries 2-10
Column access specifiersin MIB tables 4-8
Command Error Table 2-19, 2-21, 4-2, 4-11
Command Line Interface. See CLI

Community name, for authentication and ac-
cess-control 2-20, 4-2

Configuration variables. See Environment vari-
ables

Containment hierarchy 1-16 to 1-17
Corefile, specifying location 2-17
Customer

object ID 1-18

operations and limitations 1-24
CvArgld.H header file 2-11
CvClient.H header file 2-10
CvDefs.H header file 2-10
CvE164Address.H header file 2-11
CvErrors.H header file 2-11
CvErrors.h header file 2-11
CvObjectld.H header file 2-11
CvObjectType.H header file 2-10
CvParamValues.H header file 2-11

CvSVCAddress.H header file 2-11
CvUSL .H header file 2-11

D

Data link connection identifier. Sce DLCI
Database locking, for MIB objects 4-13 to 4-15
DefinedPath

object ID 1-18

operations and limitations 1-24
Disabling card status checking 2-20
DLCI, for Frame Relay circuits 1-19

E

Environment variables
configuring the CL1 2-12 to 2-14
configuring the MIB 2-19 to 2-21
configuring the Provisioning client 2-14 to 2-15
configuring the Provisioning Server 2-15 to 2-22
Extended Super Frame. See Pfdl

F

Filesinstalled with Provisioning Server and Appli-
cation Toolkit 2-10 to 2-11

FR NNI LPort object ID 1-19
Functions
asynchronous 1-4 to 1-7
naming conventions 1-7
operationa functions 1-8, 1-8 to 1-9, 1-49, 1-50
select loop processing functions 1-8, 1-10, 1-49,
1-50
session control functions 1-8, 1-49, 1-50
synchronous 1-4 to 1-5
utility functions 1-8, 1-10 to 1-12, 1-49, 1-50

Index-2

NavisXtend Provisioning Server User’s Guide



Index

H

Header files 2-10 to 2-11

Include filesfor client 2-10 to 2-11
Installation instructions 2-3 to 2-9
Installed files

for CLI 2-10

for MIB 4-2

for Provisioning Server and Application Toolkit
2-10to 2-11

L

Librariesfor client 2-10
Locked database 1-2, 2-19, 4-13 to 4-15
Logical port. See L Port
L Port
object ID 1-19
object ID for ATM Transport for FR NNI LPorts
1-19
object ID for ATM Virtual UNI LPorts 1-19
operations and limitations 1-25
start VP! for Virtual UNI LPort 1-25

M

MIB
cache 2-19, 4-12to 4-15
column access specifiers 4-8
Command Error Table 4-2, 4-11
community name 4-2
compiling 4-1
controlling object locking 2-19, 4-13 to 4-15
examples 4-16 to 4-38
identifying agent port 2-16
installed file 4-2
ModifyType attribute 4-9
NumRetries attribute 4-9
OID for MIB objects 4-3

overview 1-3
row aliasing 4-7
RowStatus attribute 4-8
SNMP commands supported 4-11
specifying an OID 4-16 to 4-38
structure 4-2 to 4-10
varioustables of 4-3to 4-7
viewing 4-1
MLFRBinding
operations and limitations 1-26
ModifyType attribute in MIB tables 4-9

N

Naming conventions
for functions 1-7
for object IDs 1-18

NavisXtend Provisioning Server Application Tool-
kit. See Application Toolkit.

NavisXtend Provisioning Server. See Provisioning
Server

NetCac

object ID 1-18

operations and limitations 1-26
Network

object ID 1-20

operations and limitations 1-26
NumRetries attribute in MIB tables 4-9

O

Object Attributes 1-41
Object ID
Aps 1-18
AssignedSvcSecSen 1-18

ATM Network Interworking for Frame Relay
NNI 1-19

ATM Transport for FR NNI LPorts 1-19
card 1-19

CardTca 1-18

channel 1-19

ChanPerformanceMonitor 1-18

circuit 1-19

NavisXtend Provisioning Server User's Guide

Index-3



Index

customer 1-18

defined 1-12

DefinedPath 1-18

for the CLI 1-13

inC 1-13

inC++ 1-13

LPort 1-19

naming conventions 1-18
NetCac 1-18

network 1-20
PerformanceMonitor 1-18

PFdl 1-18

PMPCkt 1-20

PMPCktRoot 1-20
PMPSpvcLeaf 1-19
PMPSpvcRoot 1-20

PnniNode 1-18

PPort 1-19

PPortTca 1-18

Reference Time Server 1-20
ServiceName 1-18
ServiceName endpoint 1-19
SMDS address prefix 1-20
SMDS dien group address 1-20
SMDS dienindividual address 1-20
SMDS country code 1-20
SMDS group screen 1-18
SMDS individual screen 1-18
SMDS locdl individual address 1-20
SMDS netwide group address 1-20
SMDS switch group address 1-20
Spvc 1-20

SvcAddress 1-20

SvcConfig 1-18

SvcCUG 1-18

SvcCUGMbr 1-18
SvcCUGMbrRule 1-18
SvcNetworkld 1-20
SvcNodePrefix 1-20

SvcPrefix 1-20

SvcSecSen 1-18
SvcSecScnActParam 1-18
SvcUserPart 1-20

switch 1-20

TrafficDesc 1-18

TrafficShaper 1-19

Trunk 1-18

VpciTable 1-20

VPN 1-18
Object identifier. See Object ID
Object types, supported 1-13 to 1-38
Operational functions 1-8, 1-8 to 1-9

P

PerformanceM onitor

object ID 1-18

operations and limitations 1-27
PFdI

object ID 1-18

operations and limitations
Physical port. See PPort
PM PCkt

object ID 1-20

operations and limitations 1-27
PMPCktRoot

object ID 1-20

operations and limitations 1-28
PMPSpvcL eaf

object ID 1-19

operations and limitations 1-28
PM PSpvcRoot

object ID 1-20

operations and limitations 1-28
PnniNode

object ID 1-18

operations and limitations 1-28
Point-to-MultiPoint circuit leaf. See PMPCkt
Point-to-MultiPoint circuit root. See PMPCKRoot
Point-to-MultiPoint SPVC leaf. See PMPSpvcl eaf

Point-to-MultiPoint SPV C root. See
PM PSpvcRoot

Post-installation tasks 2-7 to 2-9
PPort

object ID 1-19

operations and limitations 1-29
PPortTca

object ID 1-18

operations and limitations 1-29

Index-4

NavisXtend Provisioning Server User’s Guide



Index

Prerequisites
network 2-3
Provisioning client 2-2
Provisioning Server 2-1to 2-2
Programming files 2-10 to 2-11
ProvClient.h header file 2-10
Provisioning client
controlling SNMP parameters 2-15
enabling atracefile 2-15
See CLI
Provisioning Server
controlling context timeout 2-18
controlling SMDS addresses 2-21
controlling SNMP parameters 2-18
enabling trace files 2-17
identifying the MIB agent port 2-16
identifying the Provisioning Server port 2-16
implementing security 2-21 to 2-22
installation instructions 2-3 to 2-9
installed files 2-10 to 2-11
MIB overview 1-3
OID for MIB objects 4-3
overview 1-1to 1-3
post-installation tasks 2-7 to 2-9
SNMP agent 4-2
specifying community strings 2-20, 4-2
specifying core file location 2-17
stopping and restarting 2-22
testing the server 2-8
troubleshooting problems 2-22 to 2-26
un-installation instructions 2-27

R

Reference Time Server

object ID 1-20
RefTimeServer

operations and limitations 1-29
Row aiasing in MIB tables 4-7
RowsStatus attribute in MIB tables 4-8

S

Sample code 2-10
Security settings

CLI 2-14

Provisioning Server 2-21 to 2-22
Select loop processing functions 1-8, 1-10
Server port, identifying 2-16
ServiceName

object ID 1-18

operations and limitations 1-29
ServiceName endpoint, object ID 1-19
Session control functions 1-8
SMDS address prefix

object ID 1-20

operations and limitations 1-29
SMDS dlien group address

object ID 1-20

operations and limitations 1-30
SMDS dien individual address

object ID 1-20

operations and limitations 1-30
SMDS country code

object ID 1-20

operations and limitations 1-30
SMDS group screen

object ID 1-18

operations and limitations 1-31
SMDS individual screen

object ID 1-18

operations and limitations 1-31
SMDS locadl individual address

object ID 1-20

operations and limitations 1-31
SMDS netwide group address

object ID 1-20

operations and limitations 1-31

SMDS SSl individual address, operations and limi-
tations 1-31

SMDS switch group address
object ID 1-20
operations and limitations 1-32
SNMP agent 4-2

SNMP commands supported by the Provisioning
Server 4-11

NavisXtend Provisioning Server User's Guide

Index-5



Index

SNMP parameters
CLI 2-14
Provisioning client 2-15
Provisioning Server 2-18
Spvc
object ID 1-20
operations and limitations 1-32
Start VPI for Virtual UNI LPort 1-25
Stopping and restarting
CLI 2-22
Provisioning Server 2-22
Strings, enclosing strings in quotes 3-3
SVC addressing 1-44 to 1-48
SV C closed user group member rule. See Svc-
CUGMbrRule
SV C closed user group member. See SvcCUGMbr
SV C closed user group. See SvcCUG

SV C security screen action param. See SvcSecSc-
nActParam

SV C security screen. See SvcSecScn
SvcAddress

object ID 1-20

operations and limitations 1-32
SvcConfig

object ID 1-18

operations and limitations 1-33
SvcCUG

object ID 1-18

operations and limitations 1-33
SvcCUGMbr

object ID 1-18

operations and limitations 1-33
SvcCUGMbrRule

object ID 1-18

operations and limitations 1-34
SvcNetworkld

object ID 1-20
SvcNodePrefix

object ID 1-20

operations and limitations 1-34
SvcPrefix

object ID 1-20

operations and limitations 1-35

SvcSecSen

object ID 1-18

operations and limitations 1-36
SvcSecScnActParam

object ID 1-18

operations and limitations 1-36
SvcUserPart

object ID 1-20

operations and limitations 1-36
Switch

object ID 1-20

operations and limitations 1-36
Synchronous functions 1-4 to 1-5

T

Testing

CLI 2-9

Provisioning Server 2-8
Tracefile

enabling client trace file 2-15

enabling server trace files 2-17
TrafficDesc

object ID 1-18

operations and limitations 1-37
TrafficShaper

object ID 1-19

operations and limitations 1-37
Troubleshooting problems 2-22 to 2-26
Trunk

object ID 1-18

operations and limitations 1-38

U

Un-installation instructions 2-27
Utility functions 1-8, 1-10to 1-12

Vv

Variable argument list 1-7, 1-49
VCI for ATM circuits 1-19

Index-6

NavisXtend Provisioning Server User’s Guide



Index

Virtual Channel Identifier. See VCI
Virtual Path Identifier. See VPI
VpciTable

object ID 1-20

operations and limitations 1-38
VPI (start) for Virtual UNI LPort 1-25
VPl for ATM circuits 1-19
VPN

object ID 1-18

operations and limitations 1-38

W

Writing a provisioning script using CLI 2-27

Writing programs
basic stepsin C 1-49, 2-27
basic stepsin C++ 1-50, 2-27
recompiling existing application 2-28

upgrading an existing application 2-28

NavisXtend Provisioning Server User's Guide

Index-7



	LIBRARY
	Table of Contents
	About This Guide
	What You Need to Know
	Documentation Reading Path
	How to Use This Guide
	What’s New in This Release?
	What’s New in This Guide?
	Conventions
	Related Documents
	Customer Comments
	Customer Support
	Terminology

	Overview
	NavisXtend Provisioning Server
	Application Toolkit
	Synchronous and Asynchronous Functions
	Functions That Take an Argument List
	Function Names

	Toolkit Functionality
	Session Control Functions
	Operational Functions
	Select Loop Processing Functions
	Utility Functions

	Managed Objects
	Object Types
	Containment Hierarchy
	Naming Conventions for Objects
	Descriptions of Object Types
	CVT_Aps
	CVT_AssignedSvcSecScn
	CVT_Card
	CVT_CardTca
	CVT_ChanPerformanceMonitor
	CVT_Channel
	CVT_Circuit
	CVT_Customer
	CVT_DefinedPath
	CVT_LPort
	CVT_MLFRBinding
	CVT_NetCac
	CVT_Network
	CVT_PerformanceMonitor
	CVT_PFdl
	CVT_PMPCkt
	CVT_PMPCktRoot
	CVT_PMPSpvcLeaf
	CVT_PMPSpvcRoot
	CVT_PnniNode
	CVT_PPort
	CVT_PPortTca
	CVT_RefTimeServer
	CVT_ServiceName
	CVT_SmdsAddressPrefix
	CVT_SmdsAlienGroupAddress
	CVT_SmdsAlienIndividualAddress
	CVT_SmdsCountryCode
	CVT_SmdsGroupScreen
	CVT_SmdsIndividualScreen
	CVT_SmdsLocalIndividualAddress
	CVT_SmdsNetwideGroupAddress
	CVT_SmdsSSIIndividualAddress
	CVT_SmdsSwitchGroupAddress
	CVT_Spvc
	CVT_SvcAddress
	CVT_SvcConfig
	CVT_SvcCUG
	CVT_SvcCUGMbr
	CVT_SvcCUGMbrRule
	CVT_SvcNetworkId
	CVT_SvcNodePrefix
	CVT_SvcPrefix
	CVT_SvcSecScn
	CVT_SvcSecScnActParam
	CVT_SvcUserPart
	CVT_Switch
	CVT_TrafficDesc
	CVT_TrafficShaper
	CVT_Trunk
	CVT_VPCITable
	CVT_VPN

	Valid Object Types for Operational Functions
	Object Attributes
	Circuit Provisioning
	Related Error Reporting
	Environment Variable to Override Status Check

	Bit Mask
	SVC Addressing
	String Conversion
	E.164native
	AESA Addresses
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	DefaultRoute
	UserPart
	X.121

	Class B Addressing
	General API Usage
	C Program
	C++ Program


	Installation and Administration
	Prerequisites
	Provisioning Server Requirements
	Server Hardware
	Server Software

	Provisioning Client Requirements
	Client Hardware
	Client Software

	Switch Requirements
	Network Requirements

	Installation Instructions
	Installing the Provisioning Software in a Single-System Configuration
	Installing the Provisioning Software in a Two-System Configuration
	Post-Installation Tasks
	Modifying the Configuration File
	Testing the Server
	Setting Environment Variables
	Testing the CLI
	Recompiling an Existing Provisioning Client

	Installed Files
	Programming Files

	Setting Environment Variables
	Configuring the CLI
	Identifying the Provisioning Server to the CLI
	Specifying Modification Type
	Specifying Retry Behavior
	Specifying Security Settings
	Controlling SNMP Parameters

	Configuring the Provisioning Client
	Enabling a Client Trace File
	Controlling SNMP Parameters

	Configuring the Provisioning Server
	Identifying the Provisioning Server Port
	Identifying the MIB Agent Port
	Specifying the Core File Location
	Enabling Server Trace Files
	Controlling SNMP Parameters
	Controlling Context Timeout
	Controlling MIB Cache
	Controlling Object Locking
	Disabling Card Status Checking
	Specifying Community Strings
	Controlling SMDS Addresses
	Implementing the Security Feature


	Stopping and Restarting the Provisioning Server
	Stopping and Restarting the CLI
	Troubleshooting Problems
	Problem: Requests Frequently Time Out
	Symptoms
	Possible Causes and Solutions

	Problem: Object Is Locked by Others
	Symptoms
	Possible Causes and Solutions

	Technical Support
	Information Checklist

	Un-installation Instructions

	Writing a Provisioning Application
	Upgrading an Existing Application


	Using the CLI
	Using the CLI
	CLI Usage Overview
	Syntax


	cvadd
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvaddmember
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvCreateChanPerformanceMonitorId
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvdelete
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvdeletemember
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvget
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvgetdiag
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvgetoperinfo
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvhelp
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvlistallcontained
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvlistcontained
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvmodify
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvstartdiag
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvstopdiag
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvupdatediag
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	CLI Examples
	Sample CLI Format
	CVT_APS
	CVT_AssignedSvcSecScn
	CVT_Card
	CVT_CardTca
	CVT_Channel
	CVT_Circuit
	ServiceName Endpoints
	LPort Endpoints

	CVT_Customer
	CVT_DefinedPath
	CVT_LPort
	CVT_NetCac
	CVT_PerformanceMonitor
	CVT_PFdl
	CVT_PMPCkt
	CVT_PMPCktRoot
	CVT_PMPSpvcLeaf
	CVT_PMPSpvcRoot
	CVT_PnniNode
	CVT_PPort
	CVT_PPortTca
	CVT_RefTimeServer
	CVT_ServiceName
	CVT_SmdsAddressPrefix
	CVT_SmdsAlienGroupAddress
	CVT_SmdsAlienIndividualAddress
	CVT_SmdsCountryCode
	CVT_SmdsGroupScreen
	CVT_SmdsIndividualScreen
	CVT_SmdsLocalIndividualAddress
	CVT_SmdsNetwideGroupAddress
	CVT_SmdsSwitchGroupAddress
	CVT_Spvc
	CVT_SvcAddress
	CVT_SvcConfig
	CVT_SvcCUG
	CVT_SvcCUGMbr
	CVT_SvcCUGMbrRule
	CVT_SvcNetworkId
	CVT_SvcNodePrefix
	CVT_SvcPrefix
	CVT_SvcSecScn
	CVT_SvcSecScnActParam
	CVT_SvcUserPart
	CVT_Switch
	CVT_TrafficDesc
	CVT_TrafficShaper
	CVT_Trunk
	CVT_VPCITable
	CVT_VPN


	Using the SNMP MIB
	About the Enterprise-specific MIB
	Community Strings

	MIB Structure
	Segmented Information in Multiple Tables
	Row Aliasing
	Column Access Specifiers
	Additional Table Entries
	RowStatus Attribute
	ModifyType Attribute
	NumRetries Attribute


	Using the MIB
	Using the SNMP Commands
	Command Error Table
	MIB Cache and Database Locking
	Row Creation
	Row Modification
	get-next Operations

	Specifying the Object Identifier
	Example 1: get Command
	Example 2: get-next Command
	Example 3: set Command to Create an ATM LPort
	Example 4: set command to Modify an ATM LPort
	Example 5: set Command to Delete an ATM LPort
	Example 6: set Command to Create an ATM Circuit
	Example 7: set Command to Modify an ATM Circuit
	Example 8: set Command to Delete an ATM Circuit
	Example 9: set Command to Create a VPN Indexed by Name
	Example 10: set Command to Create a ServiceName Indexed by Name
	Example 11: set command to Modify a ServiceName Indexed by Name
	Example 12: set command to Delete a ServiceName Indexed by Name



	Index

