
Ascend Communications, Inc.

Product Code: 80023
Revision 01
December 1997

NavisXtend
Provisioning Server

User’s Guide

Copyright Notice

NavisXtend Provisioning Server User’s Guide ii

Copyright © 1997 Ascend Communications, Inc. All Rights Reserved.

This document contains information that is the property of Ascend Communications, Inc. This
document may not be copied, reproduced, reduced to any electronic medium or machine
readable form, or otherwise duplicated, and the information herein may not be used,
disseminated or otherwise disclosed, except with the prior written consent of Ascend
Communications, Inc.

le
ns

r
n a
that
, or
ten
semble,
ke one
are or
s
 by you

ill use
, title
Software License

ASCEND COMMUNICATIONS, INC. END-USER LICENSE AGREEMENT

ASCEND COMMUNICATIONS, INC. IS WILLING TO LICENSE THE ENCLOSED SOFTWARE
AND ACCOMPANYING USER DOCUMENTATION (COLLECTIVELY, THE “PROGRAM”) TO
YOU ONLY UPON THE CONDITION THAT YOU ACCEPT ALL OF THE TERMS AND CONDI-
TIONS OF THIS LICENSE AGREEMENT. PLEASE READ THE TERMS AND CONDITIONS OF
THIS LICENSE AGREEMENT CAREFULLY BEFORE OPENING THE PACKAGE(S) OR USING
THE ASCEND SWITCH(ES) CONTAINING THE SOFTWARE, AND BEFORE USING THE
ACCOMPANYING USER DOCUMENTATION. OPENING THE PACKAGE(S) OR USING THE
ASCEND SWITCH(ES) CONTAINING THE PROGRAM WILL INDICATE YOUR ACCEPTANCE
OF THE TERMS OF THIS LICENSE AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND
BY THE TERMS OF THIS LICENSE AGREEMENT, ASCEND IS UNWILLING TO LICENSE THE
PROGRAM TO YOU, IN WHICH EVENT YOU SHOULD RETURN THE PROGRAM WITHIN
TEN (10) DAYS FROM SHIPMENT TO THE PLACE FROM WHICH IT WAS ACQUIRED, AND
YOUR LICENSE FEE WILL BE REFUNDED. THIS LICENSE AGREEMENT REPRESENTS THE
ENTIRE AGREEMENT CONCERNING THE PROGRAM BETWEEN YOU AND ASCEND, AND
IT SUPERSEDES ANY PRIOR PROPOSAL, REPRESENTATION OR UNDERSTANDING
BETWEEN THE PARTIES.

1. License Grant.Ascend hereby grants to you, and you accept, a non-exclusive, non-transferab
license to use the computer software, including all patches, error corrections, updates and revisio
thereto in machine-readable, object code form only (the “Software”), and the accompanying Use
Documentation, only as authorized in this License Agreement. The Software may be used only o
single computer owned, leased, or otherwise controlled by you; or in the event of inoperability of
computer, on a backup computer selected by you. You agree that you will not pledge, lease, rent
share your rights under this License Agreement, and that you will not, without Ascend’s prior writ
consent, assign or transfer your rights hereunder. You agree that you may not modify, reverse as
reverse compile, or otherwise translate the Software or permit a third party to do so. You may ma
copy of the Software and User Documentation for backup purposes. Any such copies of the Softw
the User Documentation shall include Ascend’s copyright and other proprietary notices. Except a
authorized under this paragraph, no copies of the Program or any portions thereof may be made
or any person under your authority or control.

2. Ascend’s Rights.You agree that the Software and the User Documentation are proprietary,
confidential products of Ascend or Ascend's licensor protected under US copyright law and you w
your best efforts to maintain their confidentiality. You further acknowledge and agree that all right
NavisXtend Provisioning Server User’s Guide iii

and interest in and to the Program, including associated intellectual property rights, are and shall remain
with Ascend or Ascend's licensor. This License Agreement does not convey to you an interest in or to
the Program, but only a limited right of use revocable in accordance with the terms of this License
Agreement.

3. License Fees.The license fees paid by you are paid in consideration of the license granted under
this License Agreement.

e
cend

reof.
er

ate
h the
ts, for

r

y

icense
,
as

nt or
nited

ded that
nd
at
onsent
Software License

4. Term. This License Agreement is effective upon your opening of the package(s) or use of the
switch(es) containing Software and shall continue until terminated. You may terminate this Licens
Agreement at any time by returning the Program and all copies or portions thereof to Ascend. As
may terminate this License Agreement upon the breach by you of any term hereof. Upon such
termination by Ascend, you agree to return to Ascend the Program and all copies or portions the
Termination of this License Agreement shall not prejudice Ascend's rights to damages or any oth
available remedy.

5. Limited Warranty. Ascend warrants, for your benefit alone, for a period of 90 days from the d
of shipment of the Program by Ascend (the “Warranty Period”) that the program diskettes in whic
Software is contained are free from defects in material and workmanship. Ascend further warran
your benefit alone, that during the Warranty Period the Program shall operate substantially in
accordance with the User Documentation. If during the Warranty Period, a defect in the Program
appears, you may return the Program to the party from which the Program was acquired for eithe
replacement or, if so elected by such party, refund of amounts paid by you under this License
Agreement. You agree that the foregoing constitutes your sole and exclusive remedy for breach b
Ascend of any warranties made under this Agreement. EXCEPT FOR THE WARRANTIES SET
FORTH ABOVE, THE PROGRAM IS LICENSED “AS IS”, AND ASCEND DISCLAIMS ANY AND
ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE AND ANY WARRANTIES OF NONINFRINGEMENT.

6. Limitation of Liability. Ascend’s cumulative liability to you or any other party for any loss or
damages resulting from any claims, demands, or actions arising out of or relating to this License
Agreement shall not exceed the greater of: (i) ten thousand US dollars ($10,000) or (ii) the total l
fee paid to Ascend for the use of the Program. In no event shall Ascend be liable for any indirect
incidental, consequential, special, punitive or exemplary damages or lost profits, even if Ascend h
been advised of the possibility of such damages.

7. Proprietary Rights Indemnification. Ascend shall at its expense defend you against and,
subject to the limitations set forth elsewhere herein, pay all costs and damages made in settleme
awarded against you resulting from a claim that the Program as supplied by Ascend infringes a U
States copyright or a United States patent, or misappropriates a United States trade secret, provi
you: (a) provide prompt written notice of any such claim, (b) allow Ascend to direct the defense a
settlement of the claim, and (c) provide Ascend with the authority, information, and assistance th
Ascend deems reasonably necessary for the defense and settlement of the claim. You shall not c
NavisXtend Provisioning Server User’s Guide iv

to any judgment or decree or do any other act in compromise of any such claim without first obtaining
Ascend’s written consent. In any action based on such a claim, Ascend may, at its sole option, either: (1)
obtain for you the right to continue using the Program, (2) replace or modify the Program to avoid the
claim, or (3) if neither (1) nor (2) can reasonably be effected by Ascend, terminate the license granted
hereunder and give you a prorata refund of the license fee paid for such Program, calculated on the basis
of straight-line depreciation over a five-year useful life. Notwithstanding the preceding sentence,
Ascend will have no liability for any infringement or misappropriation claim of any kind if such claim is

rovided
of the

l any
 to do

h the
g out
y the

ther
tion to
 of this

ch
e any

under
t actions
Software License

based on: (i) the use of other than the current unaltered release of the Program and Ascend has p
or offers to provide such release to you for its then current license fee, or (ii) use or combination
Program with programs or data not supplied or approved by Ascend to the extent such use or
combination caused the claim.

8. Export Control. You agree not to export or disclose to anyone except a United States nationa
portion of the Program supplied by Ascend without first obtaining the required permits or licenses
so from the US Office of Export Administration, and any other appropriate government agency.

9. Governing Law.This License Agreement shall be construed and governed in accordance wit
laws and under the jurisdiction of the Commonwealth of Massachusetts, USA. Any dispute arisin
of this Agreement shall be referred to an arbitration proceeding in Boston, Massachusetts, USA b
American Arbitration Association.

10. Miscellaneous.If any action is brought by either party to this License Agreement against the o
party regarding the subject matter hereof, the prevailing party shall be entitled to recover, in addi
any other relief granted, reasonable attorneys’ fees and expenses of arbitration. Should any term
License Agreement be declared void or unenforceable by any court of competent jurisdiction, su
declaration shall have no effect on the remaining terms hereof. The failure of either party to enforc
rights granted hereunder or to take action against the other party in the event of any breach here
shall not be deemed a waiver by that party as to subsequent enforcement of rights or subsequen
in the event of future breaches.
NavisXtend Provisioning Server User’s Guide v

. xx
.. xx
xxii
xiii
 xxv
xxvi
vii

 1-1
1-4
 1-5
1-8
Contents

About This Guide
What You Need to Know...
Documentation Reading Path...
How to Use This Guide...
What’s New in This Guide ... x
Related Documents ..
Conventions..

Terminology.. xx

1 Overview
NavisXtend Provisioning Server ..
Application Toolkit...

Synchronous and Asynchronous Functions...
Functions That Take an Argument List ...
NavisXtend Provisioning Server User’s Guide vii

Function Names... 1-9
Toolkit Functionality .. 1-9

Session Control Functions ... 1-10
Operational Functions.. 1-10
Select Loop Processing Functions ... 1-11
Utility Functions .. 1-12

1-14
1-14
-17
-20
-22
-22
-23
-23
-23

-24
-25
-25
-26
-26
-27
-27
-27
-27
-28
-28
-28
-28
-29
-29
29
-30
-30
-30
31
-31
-31
-31
Managed Objects..
Object Types...
Containment Hierarchy .. 1
Naming Conventions for Objects ... 1
Descriptions of Object Types ... 1

CVT_Aps... 1
CVT_AssignedSvcSecScn... 1
CVT_Card.. 1
CVT_Channel .. 1
CVT_Circuit .. 1
CVT_Customer.. 1
CVT_LPort .. 1
CVT_NetCac ... 1
CVT_Network ... 1
CVT_PerformanceMonitor.. 1
CVT_PFdl.. 1
CVT_PMPCkt.. 1
CVT_PMPCktRoot.. 1
CVT_PMPSpvcLeaf .. 1
CVT_PMPSpvcRoot.. 1
CVT_PPort .. 1
CVT_ServiceName.. 1
CVT_SmdsAddressPrefix.. 1
CVT_SmdsAlienGroupAddress .. 1
CVT_SmdsAlienIndividualAddress .. 1-
CVT_SmdsCountryCode... 1
CVT_SmdsGroupScreen ... 1
CVT_SmdsIndividualScreen ... 1
CVT_SmdsLocalIndividualAddress.. 1-
CVT_SmdsNetwideGroupAddress.. 1
CVT_SmdsSSIIndividualAddress ... 1
CVT_SmdsSwitchGroupAddress .. 1
NavisXtend Provisioning Server User’s Guide viii

CVT_Spvc ... 1-32
CVT_SvcAddress .. 1-32
CVT_SvcConfig .. 1-33
CVT_SvcCUG... 1-33
CVT_SvcCUGMbr .. 1-34
CVT_SvcCUGMbrRule .. 1-34

-34
-34
-36
-36
-36
-36
-36
-37
-37
-38
-40
-41
-42
-43
-43
-44
-44
-45
-45
-45
-46
-46

1-46
1-47
-47
-48

. 2-2
 2-2
2-3
 2-3
CVT_SvcNodePrefix ... 1
CVT_SvcPrefix.. 1
CVT_SvcSecScn.. 1
CVT_SvcSecScnActParam.. 1
CVT_SvcUserPart ... 1
CVT_Switch .. 1
CVT_TrafficDesc... 1
CVT_TrafficShaper.. 1
CVT_VPN ... 1

Valid Object Types for Operational Functions ... 1
Object Attributes .. 1
Bit Mask ... 1
SVC Addressing... 1

String Conversion .. 1
E.164native .. 1
AESA Addresses ... 1

Example 1.. 1
Example 2.. 1
Example 3.. 1
Example 4.. 1

DefaultRoute.. 1
UserPart ... 1

Class B Addressing ..
General API Usage...

C Program.. 1
C++ Program ... 1

2 Installation and Administration
Prerequisites ..

Provisioning Server Requirements ..
Provisioning Client Requirements...
Network Requirements ..
NavisXtend Provisioning Server User’s Guide ix

Installation Instructions .. 2-4
Installing the Provisioning Software in a Single-System Configuration 2-4
Installing the Provisioning Software in a Two-System Configuration 2-7
Post-Installation Tasks ... 2-8

Testing the Server.. 2-8
Setting Environment Variables.. 2-9

-10
0
-10
-11
-13

-13
4
4

-15
-15
16
-16
-16
-17
18
8
18
-19
-20
20
21
1

22
23
-24
-24
-25
-25
-25
-25
2-25
-26
Testing the CLI.. 2
Recompiling an Existing Provisioning Client... 2-1

Installed Files... 2
Programming Files... 2

Setting Environment Variables... 2
Configuring the CLI... 2

Identifying the Provisioning Server to the CLI... 2-1
Specifying Modification Type... 2-1
Specifying Security Settings ... 2
Controlling SNMP Parameters.. 2

Configuring the Provisioning Client .. 2-
Enabling a Client Trace File.. 2
Controlling SNMP Parameters.. 2

Configuring the Provisioning Server ... 2
Identifying the Provisioning Server Port... 2-
Identifying the MIB Agent Port .. 2-1
Specifying the Core File Location .. 2-
Enabling Server Trace Files .. 2
Controlling SNMP Parameters.. 2
Controlling Context Timeout .. 2-
Controlling MIB Cache... 2-
Controlling Object Locking .. 2-2
Specifying Community Strings ... 2-
Controlling SMDS Addresses ... 2-
Implementing the Security Feature ... 2

Stopping and Restarting the Provisioning Server... 2
Stopping and Restarting the CLI.. 2
Troubleshooting Problems ... 2

Problem: Requests Frequently Time Out... 2
Symptoms.. 2
Possible Causes and Solutions ..

Problem: Object Is Locked by Others ... 2
NavisXtend Provisioning Server User’s Guide x

Symptoms.. 2-26
Possible Causes and Solutions .. 2-27

Technical Support .. 2-28
Information Checklist.. 2-28

Un-installation Instuctions... 2-30
Writing a Provisioning Application ... 2-31

31

 3-2
3-3
 3-3
 3
 3-6
 3-6
 3-6
 3-6
 3-7
 3-8
 3-8
 3-8
 3-8
 3-8
 3-9
3-1
3-10
-10
3-10
-10
-11
3-12
3-12
-12
3-12
-12
-13

3-
3-14
Upgrading an Existing Application ... 2-

3 Using the CLI
Using the CLI ...

CLI Usage Overview ...
Syntax..

cvadd ..-6
Purpose ..
Command Syntax...
Parameters..
Notes ..
Examples..

cvaddmember ...
Purpose ..
Command Syntax...
Parameters..
Notes ..
Example ...

cvdelete... 0
Purpose ..
Command Syntax... 3
Parameters..
Notes .. 3
Example ... 3

cvdeletemember ...
Purpose ..
Command Syntax... 3
Parameters..
Notes .. 3
Example ... 3

cvget ... 14
Purpose ..
NavisXtend Provisioning Server User’s Guide xi

Command Syntax... 3-14
Parameters.. 3-14
Notes .. 3-14
Examples.. 3-14

cvhelp ... 3-16
Purpose .. 3-16

-16
3-16
-16
-16
-18

3-18
-18
3-18
-18
-20
-22

3-22
-22
3-22
-23
-26
-27

3-27
-27
3-27
-27
-28
-29
-29
-29
-30
-30
-30

-30
-30
-31
-31
Command Syntax... 3
Parameters..
Notes .. 3
Examples.. 3

cvlistallcontained.. 3
Purpose ..
Command Syntax... 3
Parameters..
Notes .. 3
Example ... 3

cvlistcontained.. 3
Purpose ..
Command Syntax... 3
Parameters..
Notes .. 3
Example ... 3

cvmodify... 3
Purpose ..
Command Syntax... 3
Parameters..
Notes .. 3
Example ... 3

CLI Examples... 3
Sample CLI Format ... 3
CVT_APS.. 3
CVT_AssignedSvcSecScn... 3
CVT_Card.. 3
CVT_Channel .. 3
CVT_Circuit .. 3

ServiceName Endpoints .. 3
LPort Endpoints .. 3

CVT_Customer.. 3
NavisXtend Provisioning Server User’s Guide xii

CVT_LPort .. 3-31
CVT_NetCac ... 3-32
CVT_PerformanceMonitor.. 3-32
CVT_PFdl.. 3-32
CVT_PMPCkt.. 3-33
CVT_PMPCktRoot.. 3-33

-33
-33
-34
-34
-34
-34
34
-34
-34
-35
35
-35
-35
-35
-35
-36
-36
36
36
-36
-37
-37
-37
-37
-37
-37
-38
-38

4-1
4-2
CVT_PMPSpvcLeaf .. 3
CVT_PMPSpvcRoot.. 3
CVT_PPort .. 3
CVT_ServiceName.. 3
CVT_SmdsAddressPrefix.. 3
CVT_SmdsAlienGroupAddress .. 3
CVT_SmdsAlienIndividualAddress .. 3-
CVT_SmdsCountryCode... 3
CVT_SmdsGroupScreen ... 3
CVT_SmdsIndividualScreen ... 3
CVT_SmdsLocalIndividualAddress.. 3-
CVT_SmdsNetwideGroupAddress.. 3
CVT_SmdsSwitchGroupAddress .. 3
CVT_Spvc ... 3
CVT_SvcAddress .. 3
CVT_SvcConfig .. 3
CVT_SvcCUG... 3
CVT_SvcCUGMbr .. 3-
CVT_SvcCUGMbrRule .. 3-
CVT_SvcNodePrefix ... 3
CVT_SvcPrefix.. 3
CVT_SvcSecScn.. 3
CVT_SvcSecScnActParam.. 3
CVT_SvcUserPart ... 3
CVT_Switch .. 3
CVT_TrafficDesc... 3
CVT_TrafficShaper.. 3
CVT_VPN ... 3

4 Using the SNMP MIB
About the Enterprise-specific MIB ..

Community Strings..
NavisXtend Provisioning Server User’s Guide xiii

MIB Structure... 4-3
Segmented Information in Multiple Tables ... 4-4
Row Aliasing ... 4-16
Column Access Specifiers ... 4-17
Additional Table Entries .. 4-17

RowStatus Attribute .. 4-17

8
-18
-18
-19
-19
-20
21
-23
-23
-24
-25
27
9
32
34
7
40
-41
-44
46
-48

 A-1
A-2
A-2
-2
-3
-4
A-5
-5
-5
ModifyType Attribute.. 4-1
Using the MIB.. 4

Using the SNMP Commands... 4
Command Error Table ... 4
MIB Cache and Database Locking .. 4

Row Creation... 4
Row Modification.. 4-
get-next Operations ... 4

Specifying the Object Identifier... 4
Example 1: get Command... 4
Example 2: get-next Command... 4
Example 3: set Command to Create an ATM LPort 4-
Example 4: set command to Modify an ATM LPort................................. 4-2
Example 5: set Command to Delete an ATM LPort 4-
Example 6: set Command to Create an ATM Circuit 4-
Example 7: set Command to Modify an ATM Circuit 4-3
Example 8: set Command to Delete an ATM Circuit 4-
Example 9: set Command to Create a VPN Indexed by Name................. 4
Example 10: set Command to Create a ServiceName Indexed by Name . 4
Example 11: set command to Modify a ServiceName Indexed by Name 4-
Example 12: set command to Delete a ServiceName Indexed by Name.. 4

A Containment Hierarchy
Containment Tables...

Network ..
Switch ...

STDX 3000/6000 Switch ... A
B-STDX 8000/9000 Switch ... A
CBX 500 Switch .. A

Card/PPort...
6-port V.35 Card/PPort... A
1-port 24-channel T1 Card/PPort ... A
NavisXtend Provisioning Server User’s Guide xiv

1-port 30-channel E1 Card/PPort ... A-6
6-port Universal I/O Card/Pport... A-6
8-port Low Speed UIO Card/Pport .. A-7
18-port Low Speed UIO Card/Pport .. A-7
8-port Uio Card/Pport .. A-8
4-port 24-channel T1 Card/PPort ... A-9

10
-10
-11
12
3
3
14
14
15
-16
-17
18
8

-19
-20
-21
-21
21
-22
-22
23
4-port 24-channel PRI T1 Card/PPort.. A-
4-port 30-channel E1 Card/PPort ... A
2-port HSSI Card/PPort.. A
10-port DSX-1 Card/PPort ... A-
1-port ATM UNI DS3 Card/PPort.. A-1
1-port ATM IWU OC3 Card/PPort .. A-1
1-port ATM CS/DS3 Card/PPort.. A-
1-port ATM CS/E3 Card/PPort .. A-
4-port Unchannelized T1 Card/PPort... A-
12-port E1 Card/PPort.. A
4-port Unchannelized E1 Card/PPort... A
4-port 24-channel DSX Card/PPort ... A-
1-port ATM UNI E3 Card/PPort .. A-1
4-port 32-channel PRI E1 Card/PPort.. A
1-port 28-channel DS3 Card/PPort .. A
8-port DS3 Card/PPort ... A
8-port E3 Card/PPort.. A
4-port OC-3c/STM-1 Card/PPort ... A-
8-port T1 Card/PPort.. A
8-port E1 Card/PPort.. A
1-port OC-12c/STM-4 Card/PPort ... A-

Index
NavisXtend Provisioning Server User’s Guide xv

NavisXtend Provisioning Server User’s Guide xvi

List of Figures
Figure 1-1. Components in the NavisXtend Provisioning Server System..................... 1-3
Figure 1-2. Application Toolkit Organization ... 1-5
Figure 1-3. Flow Between Client and Server for a Synchronous Function 1-6
Figure 1-4. Flow Between Client and Server for an Asynchronous Function............... 1-7
Figure 1-5. Containment Hierarchy for Managed Objects .. 1-19
Figure 1-6. Representation of the DS1 Channel Bit Mask .. 1-41
Figure 4-1. Creating an ATM LPort .. 4-28
Figure 4-2. Modifying an ATM LPort ... 4-31
Figure 4-3. Deleting an ATM LPort Using its VPI/VCI Pair 4-33
Figure 4-4. Deleting an ATM LPort Using its Interface Number................................ 4-34
Figure 4-5. Creating an ATM Circuit .. 4-36
Figure 4-6. Modifying an ATM Circuit Using its Circuit Number 4-39
Figure 4-7. Deleting an ATM Circuit Using its Circuit Number................................. 4-41
Figure 4-8. Creating a VPN Indexed by Name.. 4-43
Figure 4-9. Creating a ServiceName Indexed by Name .. 4-45
Figure 4-10. Modifying a ServiceName Indexed by Name... 4-47
Figure 4-11. Deleting a ServiceName Indexed by Name .. 4-48

1-9
-15

-20
-38
-43

-11
-19
-23

4-4
-6
-10
-2
-2
-3
-4
-5
-5

A-6
-6
-7
-7
-8

A-9
-10
-10
-11
12
3
3

14
List of Tables
Table 1-1. Naming Conventions for Toolkit Functions ..
Table 1-2. Object Types Supported by the Provisioning Server................................. 1
Table 1-3. Naming Conventions for Object ID .. 1
Table 1-4. Valid Object Types for Operational Functions.. 1
Table 1-5. Calculated nBits Values... 1
Table 2-1. Programming Files for Client Development ... 2
Table 3-1. Valid Parent and Child Object Types .. 3
Table 3-2. Valid Parent and Child Object Types .. 3
Table 4-1. Information Required for Creating Specific LPorts
Table 4-2. Information Required for Creating Specific Circuits 4
Table 4-3. Groups and Table Indexes of the Provisioning Server MIB...................... 4
Table A-1. Children of the Network Object ... A
Table A-2. Children of the STDX 3000/6000 Switch.. A
Table A-3. Children of the B-STDX 8000/9000 Switch.. A
Table A-4. Children of the CBX 500 Switch ... A
Table A-5. Children of the 6-port V.35 Card/PPort.. A
Table A-6. Children of the 1-port 24-channel T1 Card/PPort...................................... A
Table A-7. Children of the 1-port 30-channel E1 Card/PPort......................................
Table A-8. Children of the 6-port Universal I/O Card/PPort A
Table A-9. Children of the 8-port Low Speed Universal I/O Card/PPort A
Table A-10. Children of the 18-port Low Speed Universal I/O Card/PPort A
Table A-11. Children of the 8-port Universal I/O Card/PPort A
Table A-12. Children of the 4-port 24-channel T1 Card/PPort......................................
Table A-13. Children of the 4-port 24-channel PRI T1 Card/PPort............................. A
Table A-14. Children of the 4-port 30-channel E1 Card/PPort.................................... A
Table A-15. Children of the 2-port HSSI Card/PPort .. A
Table A-16. Children of the 10-port DSX-1 Card/PPort.. A-
Table A-17. Children of the 1-port ATM UNI DS3 Card/PPort A-1
Table A-18. Children of the 1-port ATM IWU OC3 Card/PPort A-1
Table A-19. Children of the 1-port ATM CS/DS3 Card/PPort A-
NavisXtend Provisioning Server User’s Guide xvii

Table A-20. Children of the 1-port ATM CS/E3 Card/PPort A-14
Table A-21. Children of the 4-port Unchannelized T1 Card/PPort.............................. A-15
Table A-22. Children of the 12-port E1 Card/PPort... A-16
Table A-23. Children of the 4-port Unchannelized E1 Card/PPort.............................. A-17
Table A-24. Children of the 4-port 24-channel DSX Card/PPort A-18
Table A-25. Children of the 1-port ATM UNI E3 Card/PPort A-18

-19
-20
-21
-21
21
-22
-22
23
Table A-26. Children of the 4-port 32-channel PRI E1 Card/PPort............................. A
Table A-27. Children of the 1-port 28-channel DS3 Card/PPort A
Table A-28. Children of the 8-port DS3 Card/PPort .. A
Table A-29. Children of the 8-port E3 Card/PPort... A
Table A-30. Children of the 4-port OC-3c/STM-1 Card/PPort.................................... A-
Table A-31. Children of the 8-port T1 Card/PPort... A
Table A-32. Children of the 8-port E1 Card/PPort... A
Table A-33. Children of the 1-port OC-12c/STM-4 Card/PPort.................................. A-
NavisXtend Provisioning Server User’s Guide xviii

C
A

S
C

A
D

E

ith a
ds,

ent.

cts.

r.
About This Guide

TheNavisXtend Provisioning Server User’s Guide describes how to use the
NavisXtend Provisioning Server Application Toolkit to develop aprovisioning client
— an application that runs on a workstation in an Ascend network and interacts w
Provisioning Server. You use the client to query and configure switch nodes, car
physical ports, logical ports, circuits, and other objects. The Application Toolkit
includes a special series of libraries and header files that support client developm

In addition, theNavisXtend Provisioning Server User’s Guide describes how to use
the Toolkit Command Line Interface (CLI) to develop aprovisioning script — a set of
shell commands used for either interactive or batch provisioning of network obje

TheNavisXtend Provisioning Server User’s Guide also describes how to use the
enterprise-specific MIB, which provides SNMP access to the Provisioning Serve
NavisXtend Provisioning Server User’s Guide xix

t and
witch

or

ns
What You Need to Know

What You Need to Know
This guide assumes that you have a working knowledge of network managemen
provisioning operations. This guide assumes that you have installed the Ascend s
hardware.

To develop a provisioning client, you need to be familiar with programming in C
C++ in a UNIX environment. Programming experience isnot required if you plan to
use the Command Line Interface only.

To use the SNMP MIB, you need to be familiar with the SNMP protocol, operatio
supported by the protocol, and MIB structure in general.

Documentation Reading Path
Before you read this guide, read theSoftware Release Notice (SRN) for NavisXtend
Provisioning Serverthat accompanies the software. The SRN will alert you to any
documentation updates or special conditions that you should be aware of.

The complete document set for the NavisXtend Provisioning Server includes the
following manuals:

If you are using the NavisXtend Provisioning Server
Application Toolkit for the first time, read the entire
NavisXtend Provisioning Server User’s Guide, which
describes the interface, features, and typical applications
for the NavisXtend Provisioning Server Application
Toolkit. It explains, in step-by-step format, what is
involved in developing a provisioning client and a
provisioning script. It also describes how to use the
SNMP MIB.

NavisXtend

ASCEND

Provisioning
Server User’s
Guide
NavisXtend Provisioning Server User’s Guide xx

Documentation Reading Path

Once you are ready to begin developing a provisioning
client, use this guide for detailed information on the
NavisXtend Provisioning Server Application
Programming Interface (API).

Use this guide for detailed information on the various
object types supported by the NavisXtend Provisioning
Server and their associated attributes.

NavisXtend

ASCEND

NavisXtend

ASCEND

Provisioning
Server
Programmer’s
Reference

Provisioning
Server
Object Attribute
Definitions

If you are using the SNMP MIB to access the
NavisXtend Provisioning Server, use this guide for
detailed information on the MIB.

NavisXtend

ASCEND

Provisioning
NavisXtend Provisioning Server User’s Guide xxi

Server
Enterprise MIB
Definitions

ts

f

d

How to Use This Guide

How to Use This Guide
The following table summarizes the information contained in this guide:

Read To Learn About

Chapter 1 General aspects of the NavisXtend Provisioning Server
and the client and how they interact with other componen
on the network. This chapter describes the interface,
features, and typical applications of the NavisXtend
Provisioning Server Application Toolkit.

Chapter 2 How to install and administer the various components o
the Provisioning Server system. This chapter also
describes the steps required to develop a provisioning
application.

Chapter 3 How to use the CLI.

Chapter 4 How to use the SNMP MIB.

Appendix A The containment hierarchy (the parent-child relation) use
to build object IDs to name objects in the network.
NavisXtend Provisioning Server User’s Guide xxii

What’s New in This Guide

What’s New in This Guide
The following table lists the new product features in this release.

Provisioning Server 2.0
New Features Description

Supports:

CBX 500 Switch

Configure elements that are part of
CBX 500 switches.

Supports:

8-port ATM E3 Card
8-port ATM DS3 Card
8-port ATM E1 Card
8-port ATM T1 Card
4-port ATM OC3 Card
1-port OC-12c Card

Configure elements of these cards for
CBX 500 switches.

Supports:

ATM IWU Card
ATM CS Card
1-port ATM CS/E3 Card
12-port E1 Card

Configure elements of these cards for
B-STDX 9000 switches.

Supports these LPorts and their associated
attributes:

ATM Direct Cell Trunk LPort
ATM OPTimum Frame Trunk LPort
ATM OPTimum Cell Trunk LPort
SMDS OPTimum Trunk LPort
Frame OPTimum Trunk LPort
Direct Line Trunk LPort
ATM NNI LPort

Configure elements of these LPorts.
NavisXtend Provisioning Server User’s Guide xxiii

What’s New in This Guide

Supports these new objects and their
associated attributes:

Network

Customer
Network Connection Admission Control
(applies to B-STDX and CBX LPorts only)
Service Name
SMDS Country Code
SVC CUG
SVC CUG Member Rule
SVC CUG Member
SVC Security Screen
Traffic Descriptor
Virtual Private Network

Switch

SVC Node Prefix

PPort

Automatic Protection Switching
Performance Monitor
Extended Super Frame Data Link
Traffic Shaper

LPort

Assigned SVC Security Screen
PMP Circuit Leaf Endpoint
PMP Circuit Root Endpoint
PMP Spvc Leaf Endpoint
PMP Spvc Root Endpoint
Soft PVC Endpoint

Configure elements of these objects.

Provisioning Server 2.0
New Features Description
NavisXtend Provisioning Server User’s Guide xxiv

SVC Security Screen Action Param
SVC User Part
SVC Address
SVC Prefix
SVC Config

nce.
Related Documents

Related Documents
This section lists the related Ascend documentation that may be useful to refere

• Network Management Station Installation Guide (Product code: #80014)

• Network Configuration Guide for B-STDX/STDX (Product code: #80017)

• Sybase 11 SQL Server Upgrade Guide (Product code: #80040)

• Upgrading to Solaris 2.5.1 and HP OpenView 4.11 (Product code: #80045)

Supports these CBX 500 features:

Switch

Switch Billing configuration

LPort

Direct Versus Virtual UNI
CLLM

Circuit

Multihop PVC management

Miscellaneous

Flow Control Processors

Configure elements related to these
features.

Enterprise-specific MIB Access the Provisioning Server using
an SNMP MIB.

Provisioning Server 2.0
New Features Description
NavisXtend Provisioning Server User’s Guide xxv

• Network Configuration Guide for CBX 500 (Product code: #80049)

h as
Conventions

Conventions
This guide uses the following conventions to emphasize certain information, suc
user input, screen options and output, and menu selections. For example:

Convention Indicates Example

Courier Program source code. unsigned long

Courier Bold User input on a separate line
and screen or system output.

eject cdrom

Please wait...

Helvetica Structure names or other
source code in body text.

CvObjectId structure

Boldface Function name,
CLI command,
UNIX command, or
user input in body text.

CvCreateNetworkId

cvaddmember

select

Typecd install and ...

Italics Variable used by a function or
command.

Book titles, new terms, and
emphasized text.

UserArgargument

NavisXtend Provisioning
Server User’s Guide

<key name> A keyboard entry. <Return>

Black border
surrounding text

Notes and warnings. See the following
examples.
NavisXtend Provisioning Server User’s Guide xxvi

Provides helpful suggestions or reference to materials not contained in
this manual.

Conventions

Terminology

The product name for the Provisioning Server product has changed from the
NMS Provisioning Server to theNavisXtend Provisioning Server. TheNavisXtend
Provisioning Server is referred to in text using any of the following terms:

• NavisXtend Provisioning Server

• Provisioning Server

• server

TheNavisXtend Provisioning Server Application Toolkit is referred to in text using
any of the following terms:

• NavisXtend Provisioning Server Application Toolkit

• Application Toolkit

• toolkit

TheNavisXtend Provisioning client is referred to in text using any of the following
terms:

• NavisXtend Provisioning client

• Provisioning client

• client

• application

Warns the reader to proceed carefully in order to avoid equipment
damage or personal harm.
NavisXtend Provisioning Server User’s Guide xxvii

The product name for CascadeView has changed toNavisCore. The old and new
product names are used interchangeably in the software and in the manuals.

tion
w to
NavisXtend Provisioning Server

1

Overview

This chapter describes what you need to know before developing an NavisXtend
Provisioning client or a provisioning script. It describes the features of the Applica
Programming Interface (API) and presents some basic procedures that show ho
perform tasks with the API.

NavisXtend Provisioning Server
The Ascend NavisXtend Provisioning Server is based on a client-server network
management architecture:

NavisXtend Provisioning Client — The client is an application responsible for
generating requests to provision Ascend network components. Much of the
provisioning functionality of CascadeView is available: the client can query and
configure Frame Relay, ATM, ATM Network Interworking, and SMDS objects
NavisXtend Provisioning Server User’s Guide 1-1

including switch nodes, cards, physical ports, logical ports, circuits, and so on.

NavisXtend Provisioning Server — The server is a UNIX process that responds to
requests from NavisXtend Provisioning clients and updates the Ascend switches and
the CascadeView database.

to
ase.
ing
t

w

rk as
ges to

 update
NavisXtend Provisioning Server

The NavisXtend Provisioning client runs on a workstation and interacts with an
NavisXtend Provisioning Server. The NavisXtend Provisioning Server responds
client requests to manage Ascend switches and updates the CascadeView datab
While there can be multiple instances of CascadeView, the NavisXtend Provision
client, and the NavisXtend Provisioning Server running on the network, any clien
typically interacts with only one Provisioning Server at a time. Each Provisioning
Server can manage all the Ascend switches and update the shared CascadeVie
database.

Because the Provisioning Server shares the same Sybase database with other
CascadeView processes, the server should reside in the same TCP/IP subnetwo
CascadeView and the Sybase database. As the Provisioning Server makes chan
the Ascend network, it maintains consistency with CascadeView/UX. The
Provisioning Server uses a locking mechanism so that NavisXtend Provisioning
clients and other CascadeView processes that share the same database cannot
the same object at the same time.

Figure 1-1 shows the relationship among the NavisXtend Provisioning client, the
NavisXtend Provisioning Server, and other components on the network.
NavisXtend Provisioning Server User’s Guide 1-2

NavisXtend Provisioning Server

Figure 1-1. Components in the NavisXtend Provisioning Server System

CascadeView
Database

 C

User-supplied NavisXtend Provisioning Clients

CascadeView/UX

NavisXtend Provisioning Server

TCP/IP

TCP/IP

Ascend SwitchAscend SwitchAscend Switch

TCP/IP

API
C++
API

CLI MIB
NavisXtend Provisioning Server User’s Guide 1-3

us

sue
Application Toolkit

The NavisXtend Provisioning Server product includes the following software:

NavisXtend Provisioning Server — Installed and maintained on a UNIX
workstation on a TCP/IP network.

NavisXtend Provisioning Server Application Toolkit — Installed and used by the
application developer to create an NavisXtend Provisioning client or script that
submits requests to the Provisioning Server.

The next section describes the NavisXtend Provisioning Server Application Toolkit.

Application Toolkit
The Application Toolkit provides the following components:

API — Used by an application developer to write a new Provisioning client or to
integrate a client into an existing provisioning system.

For the convenience of the programmer, the API functions are available in various
versions. For example, the Application Toolkit provides both a C and C++ interface
for each API function. And, the toolkit provides both a synchronous and asynchrono
version of each function that performs provisioning operations.

For details on how to use the API to develop a Provisioning client, refer to Chapter 2
in this guide and to theNavisXtend Provisioning Server Programmer’s Reference.

Command Line Interface (CLI) — Used to build a provisioning script. The CLI is a
set of command-line programs that hide the code details of the API. Users can is
these commands from any UNIX shell to provision network objects in either
interactive or batch mode.

For details on how to use the CLI to develop a provisioning script, refer to Chapter 3.

Enterprise-specific MIB — Used to access switches in the network via SNMP
commands. The MIB supports all the attributes and functionality of the API and
NavisXtend Provisioning Server User’s Guide 1-4

provides access via SNMP get, set, and get-next operations.

For details on how to use the MIB to develop a provisioning script, refer to Chapter 4
in this guide and to theNavisXtend Provisioning Server Enterprise MIB Definitions.

Figure 1-2 illustrates how the Application Toolkit is organized.

ion

on
is is
Application Toolkit

Figure 1-2. Application Toolkit Organization

Synchronous and Asynchronous Functions

The Application Toolkit provides two communication methods for each API funct
that performs provisioning operations. You can issue either:

• A synchronous function and wait for a response to your request. The applicati
waits for the request to complete before continuing with other processing. Th

API

C

Asynchronous
function

Synchronous
function

C++

Asynchronous
function

Synchronous
function

Application
Toolkit

CLIMIB
NavisXtend Provisioning Server User’s Guide 1-5

also known as ablocking request, because each function blocks to completion.

• An asynchronous function and perform other operations while your request is
being processed.

The
Application Toolkit

Figure 1-3 shows the flow between the application and the Provisioning Server for a
synchronous request. The application does not regain control of the program until the
response returns from the server.

Figure 1-3. Flow Between Client and Server for a Synchronous Function

With an asynchronous function, the application continues with other work while
waiting for the response. The application supplies a callback handler to the API.
function invokes this callback handler function to deliver the response from the server.

CvsGetObject (...)

Client Code Server Code

receives request

sends response

1

2

3

Program control
flow

Request-response
message flow
NavisXtend Provisioning Server User’s Guide 1-6

Application Toolkit

Figure 1-4 shows the flow between the application and the Provisioning Server for an
asynchronous request.

Figure 1-4. Flow Between Client and Server for an Asynchronous Function

During an asynchronous request, the following steps occur:

select ()

CvProcessEvents ()

CvaGetObject (...)

return

responseHandler ()
{
...
}

Client Code Server Code

receives request

sends response

Program control
flow

Request-response
message flow

1

2

4

3

5
API Library

6

7
8

NavisXtend Provisioning Server User’s Guide 1-7

Step 1 The application code issues an asynchronous function.

Step 2 The application sends the request to the Provisioning Server.

n
The
that

ents

ou
Application Toolkit

Synchronous functions involve less coding but may be less efficient, because the
process waits while they are processed.

Asynchronous functions allow your application to continue processing rather tha
wait for completion. However, asynchronous functions require additional coding.
application programmer must provide the callback handler and must make sure
the application invokes the API appropriately when the response returns from the
server. Specifically, the application must be built around the UNIXselect system call
and must ensure that all processing is done in between calls toselect.

Functions That Take an Argument List

Most of the C functions that perform provisioning operations on network compon
take one or more attributes. The attributes are specified in an argument list. The
Application Toolkit provides two options for specifying an argument list. Before y
issue a function that takes an argument list, you can either:

Step 3 The application immediately returns to theselect loop. If the application
callsselect directly, it needs to know what file descriptor is being used
for communication with the server. The application can issue
CvGetSelectInfo to obtain the information needed to pass toselect.

Step 4 The Provisioning Server processes the request.

Step 5 The Provisioning Server sends the response toselect.

Step 6 Whenselect notifies the application of pending messages from the
server, the application issuesCvProcessEvents, which goes into the
API library to receive and process the response.

Step 7 In turn, the API passes the response to the client response handler.

Step 8 The client code continues.
NavisXtend Provisioning Server User’s Guide 1-8

• Issue a single function (CvArgsMakeVals or CvArgsMakeIds) that takes a
variable number of arguments and builds the required data structure.

• Issue a series of utility functions that create (CvArgsMake) and fill in
(CvArgsSetAttrType) the required data structure.

se.

.

.

.

Toolkit Functionality

In C++, multiple constructors for the argument object (CvClient::Args) handle
variable argument lists.

Function Names

The name of each function varies, depending on the version of the function. Table 1-1
shows the different names for the same function that adds an object to the databa

Toolkit Functionality
The toolkit functions are divided into the following groups:

• Session Control functions open and close sockets and control session settings

• Operational functions perform provisioning operations on network components

• Select Loop Processing functions support loop processing of theselect system
call.

• Utility functions build argument lists, handle initialization, and manage storage

The following sections describe the toolkit functions by group.

Table 1-1. Naming Conventions for Toolkit Functions

Version Function Name

Asynchronous C function CvaAddObject

Synchronous C function CvsAddObject

C++ function CvClient::addObject

CLI command cvadd
NavisXtend Provisioning Server User’s Guide 1-9

nt

ost
Toolkit Functionality

Session Control Functions

Session control functions open and close sockets and control session settings.

The session control functions are:

Connect, open — Establishes a session with the Provisioning Server.

Close — Terminates a session with the Provisioning Server.

SetModifyType — Specifies whether updates are made to the network compone
and the database, or to the database only.

Operational Functions

Operational functions perform provisioning operations on network components. M
operational functions of the API have a CLI command counterpart.

 The operational functions and CLI commands are:

AddObject (Object ID, Attributes) — Creates an object in the database and
(optionally) in the switch.

AddMember (Object ID, Object ID) — Adds an address to a screen or netwide
group address.

ModifyObject (Object ID, Attributes) — Modifies specific attributes of an object in
the database and (optionally) in the switch.

DeleteObject (Object ID) — Deletes an object from the database and (optionally)
from the switch.

The CLI uses environment variables to specify session control settings
(for details, refer to “Setting Environment Variables” on page 2-13).
NavisXtend Provisioning Server User’s Guide 1-10

DeleteMember (Object ID, Object ID)— Deletes an address from a screen or
netwide group address.

GetObject (Object ID, Attributes) — Retrieves the values of specific attributes of an
object.

of

n.

leting

I

 an
Toolkit Functionality

ListContainedObjects (Object ID, type, Attributes) — Queries the database for a
list of objects of the given type that are contained by a specified parent.

ListAllContainedObjects (Object ID) — Queries the database for a list of objects
any type that are contained by a specified parent.

The following operational functions are used by the API only:

NextObject — Retrieves the next object in a list of objects.

GetErrorMsg — Returns an error message.

GetResponseArgs — Returns the argument list returned by a synchronous functio

The operational functions are supported for most target object types, with a few
restrictions. For example, you cannot specify a switch when you issue an Add or
Delete command, because the Provisioning Server does not support adding or de
switches.

Select Loop Processing Functions

Select Loop Processing functions support loop processing of theselect system call.
The functions that supportselect loop processing are:

Callback Handler — Is the prototype for a function supplied by the client. The AP
calls this callback handler to deliver a response to an asynchronous request.

GetSelectInfo — Obtains information needed to pass to aselect system call.

ProcessEvents — Processes activity on file descriptors to receive responses from
asynchronous request.

Timeout — Determines if an outstanding asynchronous request timed out.
NavisXtend Provisioning Server User’s Guide 1-11

he

t.

.

 in

tus.

ue

t

Toolkit Functionality

Utility Functions

Utility functions build argument lists, handle initialization, and manage storage. T
utility functions are:

ArgsMake — Creates an argument list.

ArgsMakeVals, ArgsMakeIds — Creates and adds arguments to an argument lis

ArgsFree — Deletes a pointer to an argument list created either explicitly or
implicitly by another function.

ArgsSetAttrType — A series of functions that add or modify an argument in an
argument list.

ArgsGetAttrType — A series of functions that read values out of an argument list

ArgsCount — Retrieves the number of arguments in an argument list.

ArgsIdAt — Retrieves a specified argument ID in an argument list.

ArgsTypeAt, ArgsValueAt — Retrieves the type or value of a specified argument
an argument list.

ArgsErrorIndex — Indicates if any argument in an argument list has an error sta

ArgsExist — Determines if a specified argument exists in an argument list.

ArgsGetStatus, ArgsStatusAt — Returns the error status code of a specified
argument in an argument list.

ArgsEqual — Compares two argument lists for equality.

ArgsCombine — Adds two argument lists, resulting in a new argument list that
combines both sets of arguments. When an argument exists in both lists, the val
from the second list is used.

ArgsRemove — Subtracts two argument lists, resulting in a new argument list tha
NavisXtend Provisioning Server User’s Guide 1-12

contains the arguments from the first list that were not in the second list.

ArgsSelect — Returns the intersection of two argument lists, resulting in a new
argument list that contains the arguments that existed in both lists. Each argument uses
the value from the first list.

ArgsToString — Converts an argument list to a printable string format.

g

Toolkit Functionality

StringFree — Deletes a pointer to a string returned byArgsToString and
ObjectIdToString .

AddArgumentByName — Adds an argument to an argument list by specifying a
textual argument name.

AddArgumentByNameValue — Adds an argument to an argument list by specifyin
a textual argument name and value.

ArgsPrint — Prints the text description of an argument list to a file.

CreateObjectTypeId , setObjectType — A series of functions that create an object
identifier of a specified type.

CreateNetworkIdFromString , CreateSwitchIdFromString — Creates an object
identifier of a specified type, based on a text description.

ObjectIdToString — Converts an object identifier to text descriptions.

GetObjectTypeValue, getObjectType — A series of functions that read a specified
value out of an object identifier.

ObjectIdToPrint — Prints the text description of an object identifier to a file.

GetArgumentName — Converts an argument ID to a printable string format.

GetEnumName — Converts an enumerated value to a printable string format.

GetObjectTypeName — Converts an object type to a printable string format.

ParseObjectId — Converts text descriptions of an object to an object identifier.

ParseObjectType — Converts a text description to an object type.
NavisXtend Provisioning Server User’s Guide 1-13

ed

o
rent

t

.

Managed Objects

Managed Objects
Managed objects are network components managed on the network. Each manag
object is represented by itsobject identifier (object ID), which is expressed as a
concatenated, ordered list of type-value identifiers, each separated by periods. T
specify an object ID, you first specify the object’s parent (if any), including the pa
type and value. Then, you specify the child type and value.

For example, an object ID for a PPort would be expressed as:

switch.100.101.102.103.card.6.pport.4

The object is identified by identifying its parent in the containment hierarchy
(switch.100.101.102.103.card.6.), and then identifying the object relative to that paren
(pport.4).

Note that the numbering of an object isnot a globally unique ID; rather, it is relative to
the parent object. Thus, this PPort is expressed as the fourth PPort of the card:

. . . pport.4

In C, an object is represented as a data structure that is manipulated using utility
functions. In C++, an object is represented by a class that is manipulated using
member functions. For the CLI, an object is represented by string representation

Object Types
Table 1-2 list the object types supported by the Provisioning Server. These object
types are defined in the fileCvObjectType.H.

The names of several objects differ from the names used in
CascadeView.
NavisXtend Provisioning Server User’s Guide 1-14

Object Types

Table 1-2. Object Types Supported by the Provisioning Server

Object Name
Enumerated Object Type

(API)
Object Type

(CLI)

Automatic Protection
Switching

CVT_Aps Aps

Assigned SVC Security
Screen

CVT_AssignedSvcSecScn AssignedSvcSecScn

Card CVT_Card Card

Channel CVT_Channel Channel

Circuit CVT_Circuit Circuit

Customer CVT_Customer Customer

Logical Port CVT_LPort Lport

Network Connection
Admission Control

CVT_NetCac NetCac

Network CVT_Network Network

Performance Monitor CVT_PerformanceMonitor PM

Extended Super Frame Data
Link

CVT_PFdl Fdl

PMP Circuit Leaf Endpoint CVT_PMPCkt PMPCktLeaf

PMP Circuit Root Endpoint CVT_PMPCktRoot PMPCktRoot

PMP SPVC Leaf Endpoint CVT_PMPSpvcLeaf PMPSpvcLeaf
NavisXtend Provisioning Server User’s Guide 1-15

PMP SPVC Root Endpoint CVT_PMPSpvcRoot PMPSpvcRoot

Physical Port CVT_PPort Pport

Service Name CVT_ServiceName ServiceName

SMDS Address Prefix CVT_SmdsAddressPrefix AddressPrefix

Object Types

SMDS Alien Group
Address

CVT_SmdsAlienGroup
Address

AlienGroupAddress

SMDS Alien Individual
Address

CVT_SmdsAlienIndividual
Address

AlienIndividualAddress

SMDS Country Code CVT_SmdsCountryCode CountryCode

SMDS Group Screen CVT_SmdsGroupScreen GroupScreen

SMDS Individual Screen CVT_SmdsIndividual
Screen

IndividualScreen

SMDS Local Individual
Address

CVT_SmdsLocalIndividual
Address

LocalIndividualAddress

SMDS Netwide Group
Address

CVT_SmdsNetwideGroup
Address

NetwideGroupAddress

SMDS Switch Group
Address

CVT_SmdsSwitchGroup
Address

SwitchGroupAddress

Soft PVC Circuit CVT_Spvc Spvc

SVC Address CVT_SvcAddress SvcAddress

SVC Config CVT_SvcConfig SvcConfig

SVC Close User Group CVT_SvcCUG SvcCUG

SVC Close User Group
Member

CVT_SvcCUGMbr SvcCUGMbr

Table 1-2. Object Types Supported by the Provisioning Server (Continued)

Object Name
Enumerated Object Type

(API)
Object Type

(CLI)
NavisXtend Provisioning Server User’s Guide 1-16

SVC Close User Group
Member Rule

CVT_SvcCUGMbrRule SvcCUGMbrRule

SVC Node Prefix CVT_SvcNodePrefix SvcNodePrefix

SVC Prefix CVT_SvcPrefix SvcPrefix

tch
Containment Hierarchy

Containment Hierarchy
Figure 1-5 shows the containment hierarchy (the parent-child relation) for building
object IDs to name objects in the network. Refer toAppendix A for containment
tables that indicate the parent-child relation of the various objects.

Keep in mind that network ID is required only when you name an object directly
below network in the containment hierarchy. You can omit the network ID for swi
and objects lower in the hierarchy.

SVC Security Screen CVT_SvcSecScn SvcSecScn

SVC Security Screen
Action Parameter

CVT_SvcSecScnActParam SvcSecScnActParam

SVC User Part CVT_SvcUserPart SvcUserPart

Switch CVT_Switch Switch

Traffic Descriptor CVT_TrafficDesc TrafficDesc

Traffic Shaper CVT_TrafficShaper TS

Virtual Private Network CVT_VPN Vpn

Table 1-2. Object Types Supported by the Provisioning Server (Continued)

Object Name
Enumerated Object Type

(API)
Object Type

(CLI)
NavisXtend Provisioning Server User’s Guide 1-17

Containment Hierarchy

Network

Switch

Card

VPN

SvcSecScn

Service Name

SvcCUGMbrRule SvcCUG

SvcCUGMbr

Customer

Traffic

Descriptor

NetCac

SVC Node

Prefix

SMDS

Country Code

SMDS Netwide

Group Address

SMDS Alien

Individual

Address

SMDS Switch

Group Address

SMDS Address

Prefix

SMDS Alien

Group Address

Figure continues onto next page
NavisXtend Provisioning Server User’s Guide 1-18

Containment Hierarchy

PPort

LPort

SMDS Group

Screen

PFdl

Performance

Monitor

APS

Traffic Shaper

Channel

(ChanDS3)
PMP Circuit

Root Endpt

PMP Circuit

Leaf Endpt

PMP Spvc

Root Endpt

PMP Spvc

Leaf Endpt

Circuit

Endpoint

Soft PVC

Circuit

SvcUserPart SVC Address SVC Prefix SVC Config

SMDS Local

Individual

Address

SMDS

Individual

Screen

Assigned

SvcSecScn

SvcSecScn

ActionParam

Figure continued from previous page
NavisXtend Provisioning Server User’s Guide 1-19

Figure 1-5. Containment Hierarchy for Managed Objects

Naming Conventions for Objects

Naming Co nventions for Objects
Table 1-3 lists the rules for naming object type-value identifiers.

Table 1-3. Naming Conventions for Object ID

Object Type How Identified

Aps
NetCac
PerformanceMonitor
PFdl
SMDS group screen
SMDS individual screen
SvcConfig
SvcSecScnActParam

The object is unique to its parent and requires no identifying
value. Identify the object by the type name and the parent.

For example, an SMDS individual screen is expressed as:
switch.100.101.102.103.card.6.pport.4.lport.2.individualscreen

AssignedSvcSecScn
Customer
SvcCUG
SvcCUGMbr
SvcCUGMbrRule
SvcSecScn
ServiceName
TrafficDesc
VPN

By a string name.

For SvcCUGMbr, the object is identified by two names: the CUG
name and the member name.

Card
LPort
PMPSpvcLeaf
PPort
TrafficShaper

By relative number. For example, the fourth PPort on a card is
identified as: switch.100.101.102.103.card.6.pport.4

The first PMPSpvcLeaf on an LPort is identified as:
switch.100.101.102.103.card.6.pport.4.lport.1.PMPspvcleaf.1

Use the relative numbering scheme to identify LPorts; do not use
the LPort Interface Number displayed in the CascadeView
screens.
NavisXtend Provisioning Server User’s Guide 1-20

ATM Transport for FR NNI LPorts are identified with VPI and
VCI numbers.

ATM Virtual UNI LPorts are identified with the VPI start value.

5

an

e

e

:

es)
 is
s

Naming Conventions for Objects

Channel By a number in the range of 1 - 28. The channel object applies
only to the channelized DS3 card. For example, a Frame Relay
circuit on a channelized DS3 card is identified as:
switch.100.101.102.103.card.6.pport.4.channel.25.lport.1.dlci.5

Circuit By the number(s) of its first endpoint. An endpoint can be an
LPort or a Service Name; the object ID representation differs
accordingly.

In the case of LPorts, either endpoint can be a Frame Relay or
ATM endpoint. For Frame Relay endpoints, use the DLCI
number. For ATM endpoints, use both the VPI and VCI values.
For ATM Network Interworking for Frame Relay NNI endpoints,
include the VPI, VCI, and DLCI numbers. For example, a Fram
Relay endpoint is expressed as:
switch.100.101.102.103.card.6.pport.4.lport.2.dlci.55

An ATM endpoint is expressed as:
switch.100.101.102.103.card.6.pport.4.lport.2.vpi.8.vci.65

In the case of ServiceName, the endpoint is identified by the
network number, the name of the ServiceName binding, and th
VPI/VCI pair or DLCI number (depending on endpoint type).

For example, a ServiceName endpoint is represented as either

network.154.188.0.0.ServiceName.xxx.vpi.14.vci.128

network.154.188.0.0.ServiceName.xxx.dlci.55

wherexxx is the name of the ServiceName binding.

Network By an IP address with the last 2 bytes set to 0 (Class B address
or the last 1 byte set to 0 (Class C addresses). This object type
used to specify a root when you issue a command to list object
contained by a specific parent.

Table 1-3. Naming Conventions for Object ID (Continued)

Object Type How Identified
NavisXtend Provisioning Server User’s Guide 1-21

PMPCkt
PMPCktRoot
PMPSpvcRoot
Spvc

By the VPI and VCI values of its endpoint.

A PMPCktLeaf endpoint is expressed as:
switch.100.101.102.103.card.6.pport.4.lport.2.PMPcktleaf.vpi.8.
vci.65

ent

.

ction
Descriptions of Object Types

Descriptions of Object Types
The following sections describe the object types, including the kinds of managem
operations that you can perform on an object and any operating restrictions. The
objects types are listed alphabetically.

CVT_Aps

Automatic Protection Switching (APS) protects SONET media from line outages
Currently, APS support is provided for 1-port OC-12c/STM-4 cards on CBX 500
switches. When the attribute CVA_PPortRedundancy is set to Aps1+1, the prote
port forms a pair with the existing PPort on the card.

SMDS address prefix By an E.164 address string (3 to 6 characters).

SMDS country code By an E.164 address string (up to 4 characters).

SMDS alien group address
SMDS alien individual address
SMDS local individual address
SMDS netwide group address
SMDS switch group address

By an E.164 address string (10 to 16 characters).

SvcAddress
SvcNodePrefix
SvcPrefix
SvcUserPart

By a string that conforms to the convention used to specify
addresses. For more information, refer to“SVC Addressing” on
page 1-42.

Switch By an IP address or by a string name.

Table 1-3. Naming Conventions for Object ID (Continued)

Object Type How Identified
NavisXtend Provisioning Server User’s Guide 1-22

You can only modify APS objects; the Provisioning Server does not support adding or
deleting them. Depending on whether the PPort is the working PPort or the protection
line, you can configure a list of PPort and APS parameters. The attribute
CVA_ApsApsCommand is supported for the APS PPort pair for sending external
switch requests.

curity
r
I
ne

pe

es,
he
, or

itch.
lized

elay
Descriptions of Object Types

CVT_AssignedSvcSecScn

AssignedSvcSecScn specifies the association between an LPort and an SVC se
screen. When you add or delete an object of this type, you are actually adding o
removing screens from the parent LPort. This object exists only on ATM UNI/NN
LPorts configured on a CBX 500 switch. A limit of 16 screens can be added to o
LPort.

CVT_Card

The CascadeView database automatically populates each switch with cards of ty
“empty”. To add a card, use the Modify command to change the card’s type from
“empty” to a specified type. Specify the appropriate card type using the attribute
CVA_CardDefinedType.

The attributes CVA_CardUioDefinedXface, CVA_CardDsx1DefinedXface, and
CVA_CardE1DefinedXface provide subtypes for the UIO, Dsx1, and E1 card typ
respectively. If you modify a card to one of these card types and do not specify t
appropriate subtype, the card defaults to uioXfaceTypeV35, dsx1XfaceTypeRj48
e1XfaceTypeCoaxPair75Ohm, respectively.

To delete a card, use the Modify command to change the card’s type to “empty”.

If you modify a card to a type that does not match the actual card type, the
Provisioning Server doesnot inform you about the type mismatch.

CVT_Channel

The channel object applies only to the channelized DS3 card on the B-STDX sw
Requests that specify a channel and are sent to an object other than the channe
DS3 card return an error.

A channel is identified by a number in the range of 1 - 28. For example, a Frame R
NavisXtend Provisioning Server User’s Guide 1-23

circuit on a channelized DS3 card is represented as:

switch.100.101.102.103.card.6.pport.4.channel.25.lport.1.dlci.55

Once a channelized DS3 card has been configured, CascadeView automatically
populates the card with all necessary channels. You can only modify channels; the
Provisioning Server does not support adding or deleting channels.

ce

:

I,

ard 6,
ort

s.

ified

int
ther:

int.
Descriptions of Object Types

CVT_Circuit

A circuit is identified by its first endpoint. An endpoint can be an LPort or a Servi
Name; the object ID representation differs accordingly.

In the case of LPorts, either endpoint can be a Frame Relay or an ATM endpoint

• For Frame Relay endpoints, use the DLCI endpoint.

• For ATM endpoints, include both the VPI and VCI values.

• For ATM Network Interworking for Frame Relay NNI endpoints, include the VP
VCI, and DLCI numbers.

• For ATM Virtual UNI endpoints, use the start VPI value.

Specify a circuit’s second endpoint with the attribute CVA_CircuitEndpoint2.

For example, the Frame Relay endpoint that connects switch 100.101.102.103, c
PPort 4, LPort 2, DLCI 55 with ATM endpoint 154.188.162.44, card 3, PPort 5, LP
11, VPI 8, VCI 65 is represented as either:

switch.100.101.102.103.card.6.pport.4.lport.2.dlci.55

switch.154.188.162.44.card.3.pport.5.lport.11.vpi.8.vci.65

The Provisioning Server supports VPI values of 0-15 for ATM circuit endpoint

If an endpoint of a circuit is defined on a channelized DS3 card, the circuit is ident
by the channel ID. For example, the Frame Relay endpoint that connects switch
100.101.102.103, card 6, PPort 4, channel 25, LPort 1, DLCI 55 with ATM endpo
128.129.130.131, card 1, PPort 2, LPort 3, VPI 14, VCI 128 is represented as ei

switch.100.101.102.103.card.6.pport.4.channel.25.lport.1.dlci.55

switch.128.129.130.131.card.1.pport.2.lport.3.vpi.14.vci.128

When you add a circuit of type VPC, you do not provide the VCI part of the endpo
NavisXtend Provisioning Server User’s Guide 1-24

For example, the endpoint for a VPC circuit is represented as:

switch.100.101.102.103.card.6.pport.4.channel.25.lport.1.vpi.14

In this case, the second endpoint must also be an ATM endpoint, as VPC circuits only
support ATM endpoints.

ding

PN
Descriptions of Object Types

In the case of ServiceName, the endpoint is identified by the network number, the
name of the ServiceName binding, and the VPI/VCI pair or DLCI number (depen
on endpoint type). Specify the second endpoint with the attribute
CVA_CircuitEndpoint2.

For example, a ServiceName endpoint is represented as either:

network.154.188.0.0.ServiceName.xxx.vpi.14.vci.128

network.154.188.0.0.ServiceName.xxx.dlci.55

where xxx is the name of the ServiceName binding.

CVT_Customer

Customer objects are associated with VPN objects (Virtual Private Networks). Each
customer object contains information that identifies both the customer and the V
with which the customer is associated. The attribute CVA_CustomerVpnName
associates the Customer object with a particular VPN.

The attribute CVA_LPortCustomerName specifies a customer name to which the
LPort belongs.

CVT_LPort

LPorts have different subtypes: Frame Relay, SMDS, ATM, and Other. When you
issue a command, specify only those attributes that are appropriate for the particular
LPort’s subtype. Refer to theNavisXtend Provisioning Server Object Attribute
Definitions for the attributes that pertain to each object type and subtype.

For SMDS objects, you can set the CVA_LPortSsiLPort attribute to the object ID of
an SMDS SSI DTE LPort. Or, to de-multiplex the LPort, you set the attribute to an
object ID of type CVT_Null (use -nullObject in the CLI).
NavisXtend Provisioning Server User’s Guide 1-25

On a channelized DS3 card, an LPort is a child of a channel. Thus, when you issue an
Add command, you must specify the channel parent.

ith

ber
ntify

 1

Loss
C

tors
ly a
Descriptions of Object Types

For ATM Virtual UNI LPorts on the CBX 500 switch, first create a feeder LPort w
ATM UNI type. Since the LPort number of a virtual UNI LPort is generated
automatically from the combination of its VPI start number and the Interface Num
(which is also generated automatically), you can use the VPI start number to ide
the LPort. For example, a Virtual UNI LPort with the start VPI number set to 1 is
represented as:

switch.128.129.130.131.card.1.pport.2.startvpi.1

ATM Network Interworking for Frame Relay NNI LPorts require a different object
identifier. This LPort type is identified by VPI/VCI pair.

For example, an ATM Network Interworking for Frame Relay NNI LPort with VPI
and VCI 32 is represented as:

switch.100.101.102.103.card.6.pport.4.vpi.1.vci.32

CVT_NetCac

Network Connection Admission Control (NetCAC) allows you to compute the
bandwidth allocation for any virtual circuit. The NetCac object exists under the
Network object. This object is supported only for CBX 500 and B-STDX 9000
switches. If the attribute CVA_NetCacCacType is set to Cascade, then only Cell
Ratio and Cell Delay Variation parameters are configurable. For Customized CA
configuration, you must supply Port Scale Factors and SCR Limit Scale Factors.

In the case of Customized CAC, you must supply the three SCR Limit Scale Fac
of Upper Limit, Scale Factor, and Maximum MBS values together. You can supp
maximum of 10 sets. No default values apply and no upper boundary checks are
performed for any of these scale factor values.

CVT_Network
NavisXtend Provisioning Server User’s Guide 1-26

Use this object type to specify a root when you issue a command to list objects
contained by a specific parent.

ards
hich

d with
itch,
object.

does

nd
 Leaf

ct as
ex.

nd
object
,
e

Descriptions of Object Types

CVT_PerformanceMonitor

This object supports the CURRENT (15-minute) and the ONE-DAY threshold
parameters for the 8-port T1/E1, 8-port DS3/E3, 1-port OC12, and 4-port OC3 c
on CBX 500 switches. Default values are set at the time of card configuration, w
you can then modify.

CVT_PFdl

Once a card has been configured, CascadeView automatically populates the car
all necessary Physical Ports. In the case of the ATM-T1 card on the CBX 500 sw
the CascadeView database automatically populates the Extended Super Frame

You can only modify the Extended Super Frame object; the Provisioning Server
not support adding or deleting it.

CVT_PMPCkt

A Point-to-MultiPoint (PMP) circuit consists of one endpoint acting as the Root a
the other endpoints acting as Leaves. Use this object to add PMP Leaves. A PMP
can be added, modified, and deleted. This object type applies only to CBX 500
switches. Since only ATM endpoints are supported, only VPI and VCI values are
supported. To add a leaf using the CLI or the API, you must specify the Root obje
one of the attributes. To add a leaf using the MIB, you specify the Root as an ind

CVT_PMPCktRoot

A Point-to-MultiPoint (PMP) circuit consists of one endpoint acting as the Root a
the other endpoints acting as Leaves. PMP Root can be added or deleted. This
type applies only to CBX 500 switches. Since only ATM endpoints are supported
only VPI and VCI values are supported. To add a PMP Circuit using the CLI or th
API, add the Root and the Leaves separately. Root attributes are Create-Only
NavisXtend Provisioning Server User’s Guide 1-27

attributes.

f the

dify,
se the

dd,

eaf,

d with
r

 a
 the
 To
witch
Descriptions of Object Types

CVT_PMPSpvcLeaf

Use this object type to add the Point-to-MultiPoint (PMP) SPVC Leaf.

To add a leaf using the CLI or the API, you must specify the Root object as one o
attributes. To add a leaf using the MIB, you specify the Root as an index.

You must specify the correct instance number when you perform an add, get, mo
or delete operation. To retrieve the correct instance number from the database, u
attribute CVA_PMPSpvcRootNextAvailableLeafNo.

CVT_PMPSpvcRoot

This object type is similar to CVT_Spvc, but is used to add a Point-to-MultiPoint
(PMP) SPVC root. This object type applies only to CBX 500 switches. You can a
modify, and delete this object type.

When you add the Root, the first leaf is automatically added. To modify the first l
use the object type CVT_PMPSpvcLeaf.

CVT_PPort

Once a card has been configured, CascadeView automatically populates the car
all necessary Physical Ports. You can only modify PPorts; the Provisioning Serve
does not support adding or deleting PPorts.

CVT_ServiceName

ServiceName binding support allows you to identify a primary port (UNI/NNI) with
name so that a circuit can identify its service endpoint by this name instead of by
LPort name. The primary LPort can be a Frame Relay or an ATM UNI/NNI LPort.
associate a backup binding with the primary service name binding, associate a s
port to act as a backup LPort.
NavisXtend Provisioning Server User’s Guide 1-28

When creating a service name binding, specify only the primary LPort. This primary
binding cannot be modified.

ing

e

s all
efore

ly if it

t type
t exist

fore
dd

bject
ist on

MDS
Descriptions of Object Types

To set up or modify a backup binding, modify the ServiceName object by specify
the backup LPort. The attribute CVA_ServiceNameActiveBinding indicates the
current status of binding. To revert from backup binding to primary binding, set th
attribute CVA_ServiceNameActiveBinding to Primary in the modify request.

CVT_SmdsAddressPrefix

An SMDS address prefix is created on a switch to indicate that the switch handle
E.164 addresses that begin with that prefix. You must create an address prefix b
you can create an SMDS local individual address that uses that prefix.

You can create an address prefix at any time. You can delete an address prefix on
is not referenced by any SMDS local individual address. No attributes apply to
address prefixes.

CVT_SmdsAlienGroupAddress

Objects of this type are used only as members of a group screen. Use this objec
to add a group address to an SMDS group screen, if the group address does no
on the switch as a switch group address (refer to“CVT_SmdsSwitchGroupAddress”
on page 1-31). In this case, you must first create an SMDS alien group address be
you can add the group address to the SMDS group screen. To do so, issue an A
command with no arguments. Then, issue the Add Member command to add the
address to the group screen.

CVT_SmdsAlienIndividualAddress

Objects of this type are used only as members of an individual screen. Use this o
type to add an address to an SMDS individual screen, if the address does not ex
the switch as a local individual address (refer to
“CVT_SmdsLocalIndividualAddress” on page 1-31). In this case, you must first
create an SMDS alien individual address before you can add the address to the S
NavisXtend Provisioning Server User’s Guide 1-29

individual screen. To do so, issue an Add command with no arguments. Then, issue
the Add Member command to add the address to the individual screen.

se a
he

ble

it.
oup
ers.

n

te it.
Descriptions of Object Types

CVT_SmdsCountryCode

Specify this object on the network level using up to 3 digits in E.164 format. To u
country code in an SMDS local individual address, include a dash (-) between t
country code and the prefix (for example: 1-9789521111). If you omit the country
code, the server uses the default country code specified in the environment varia
CV_DFLT_SMDS_CC (for details, refer to“Setting Environment Variables” on page
2-13).

CVT_SmdsGroupScreen

There is only one group screen per SMDS LPort, and you must explicitly create
Create the group screen before you add addresses to it. Once you create the gr
screen, you can add switch group addresses or alien group addresses as memb
When you create a netwide group address, a switch group address is created
automatically.

You can use an SMDS screen to either allow or disallow specific addresses for a
LPort. Use the attribute CVA_GroupScreenOperation to do so.

CVT_SmdsIndividualScreen

There is only one individual screen per SMDS LPort, and you must explicitly crea
Create an individual screen before you add addresses to it. Once you create the

The Add command can fail or cause problems in the switch if the alien
individual address uses a prefix that is assigned to the switch. By
definition, an alien individual address should use a prefix not currently
defined anywhere in the network.
NavisXtend Provisioning Server User’s Guide 1-30

individual screen, you can add addresses or alien addresses as members.

An SMDS screen can be used to allow or disallow specific addresses for the LPort.
Use the CVA_IndividualScreenOperation attribute to do so.

ress.

 also

ot

of the
ss

 of
ess
 You

 a
Descriptions of Object Types

CVT_SmdsLocalIndividualAddress

In CascadeView, an SMDS local individual address is known as an individual add
You create this object on an LPort to associate that address with the LPort. The
address must use a prefix that has already been created on that switch. You can
use an existing country code specified in the network (refer to
“CVT_SmdsCountryCode” on page 1-30) as part of the local individual address. You
cannot delete an LPort until you have deleted all its local individual addresses.

CVT_SmdsNetwideGroupAddress

A netwide group address is a collection of SMDS switch group address objects.
Normally, you create and manage group addresses through these objects and n
through SMDS switch group address objects. You must create a netwide group
address in the appropriate subnetwork before you can add members (individual
addresses) to it. You must also use the Delete Member command to remove all
netwide group address members before you can delete the netwide group addre
itself.

CVT_SmdsSSIIndividualAddress

This object is obsolete, but is maintained for compatibility with previous versions
the Provisioning Server. The SniDxi LPort does not have to subscribe to an addr
from an SSI LPort’s address pool even if the LPort is multiplexed to an SSI LPort.
can perform any SMDS configuration without creating the SSI individual address
pool.

CVT_SmdsSwitchGroupAddress

An SMDS switch group address does not appear in CascadeView. This object
represents a group address that is local to a switch. A switch group address with
NavisXtend Provisioning Server User’s Guide 1-31

given address should exist on a switch only if the equivalent netwide group address
has members on that switch; it lists the addresses of that switch that are members of
the equivalent netwide group address. The only time you should need to reference a
group address directly is to add one to a group screen.

s.
up
lly. You
bers.

at the
u can

500
Descriptions of Object Types

You should not have to create or delete objects of this type; they are created and
deleted automatically during the management of SMDS netwide group addresse
However, since you cannot delete a netwide group address if it contains any gro
address members, in rare cases, you may need to delete a group address manua
cannot delete a group address until it no longer contains individual address mem

CVT_Spvc

Soft PVC circuits are identified by an endpoint at one end and the SVC Address
other end. The other endpoint may not necessarily exist in the same network. Yo
add, modify, and delete this object. This object type applies only to CBX 500
switches. Since only ATM endpoints are supported, only VPI and VCI values are
supported. Specify the SVC Address using attributes.

CVT_SvcAddress

SvcAddress provides an interface to set up full ATM addresses (20 octets) on an
LPort. This address is associated with the following LPort types located on CBX
switches:

• atmUniDte

• atmUniDce

• atmNni

Frame Relay addresses are associated with the following LPort types located on
B-STDX 8000 and 9000 switches:

• frUniDte

• frUniDce

• frNni
NavisXtend Provisioning Server User’s Guide 1-32

There can be zero or more SvcAddresses configured per LPort.

An ATM Address can be one of the following format types:

• E.164native

ver

s,

a
on.

t

 the
Descriptions of Object Types

• AESA addresses:

– E.164AESA

– DCCAESA

– ICDAESA

– CustomAESA

For AESA addresses, if the address prefix is 39 characters, the Provisioning Ser
appends a zero to the address to make it 20 octets.

Frame Relay switched virtual circuits can have only E.164native addresses.

For information on the convention used to specify SVC addresses, refer to“SVC
Addressing” on page 1-42.

CVT_SvcConfig

Use this object to configure an LPort for switched virtual circuits. For Frame SVC
only the attribute CVA_SvcConfigHDTimer attribute is valid.

Only one SvcConfig object is associated with an LPort. An LPort is created with
default SvcConfig; you can only modify this object to change an SVC configurati
The SvcConfig is deleted when its LPort is deleted.

CVT_SvcCUG

Use this object to configure SVC Closed User Groups. You can create this objec
under the Network object. Each SVC Closed User Group can contain up to 128
members. You cannot perform a database-only modification on this object, since
modification has to be distributed throughout the network.
NavisXtend Provisioning Server User’s Guide 1-33

G
ct
n

TM
ding,
;

oses
h is
ess

its of

ro or
Descriptions of Object Types

CVT_SvcCUGMbr

Use this object to create the association of an SvcCUG object and an
SvcCUGMbrRule. Deleting this type of object disassociates the specified SvcCU
with the SvcCUGMbrRule. Adding, modifying, and deleting an SvcCUGMbr obje
requires network distribution; you cannot perform a database-only modification o
this object.

CVT_SvcCUGMbrRule

During creation of this object, a distribution list is created by matching its rule to A
SVC prefixes, addresses, and user parts configured on nodes in the network. Ad
modifying, and deleting an SvcCUGMbrRule object requires network distribution
you cannot perform a database-only modification on this object.

CVT_SvcNodePrefix

This object provides an interface to add node prefixes on a switch. The switch imp
no constraints on the node prefixes except to enforce the maximum length (whic
the same as a full address length — 20 octets). For AESA addresses, if the addr
prefix is an odd number of characters, the Provisioning Server stuffs the last 4 b
the last octet with zeros, thereby appending a zero to the address prefix.

The valid address format types for ATM SVCs are the same as described for the
CVT_SvcAddress object (refer to“CVT_SvcAddress” on page 1-32). For Frame
Relay SVCs, E.164native format is the only valid address format. There can be ze
more SvcNodePrefixes configured per switch.

For information on the convention used to specify SVC addresses, refer to“SVC
Addressing” on page 1-42.

CVT_SvcPrefix
NavisXtend Provisioning Server User’s Guide 1-34

This object provides an interface to set up prefixes on an LPort. Prefix is one of the
three classes of static addressing used for switched virtual circuits. The other classes
are full ATM Address and Node Prefix.

 on

th
ted to
Descriptions of Object Types

Prefix is associated with the following LPort types located on CBX 500 switches:

• atmUniDte

• atmUniDce

• atmNni

Frame Relay SVC prefixes are associated with the following LPort types located
B-STDX 8000 and 9000 switches:

• frUniDte

• frUniDce

• frNni

There can be zero or more SvcPrefixes configured per LPort.

An ATM Address prefix can be of the following format types:

• E.164native

• AESA addresses:

– E.164AESA

– DCCAESA

– ICDAESA

– CustomAESA

• DefaultRoute: Use this format to configure the port with an ATM address leng
of zero bits. This enables this port to receive messages that could not be rou
other ports because of ATM address mismatch.

For Frame Relay SVCs, E.164native and DefaultRoute are valid formats.
NavisXtend Provisioning Server User’s Guide 1-35

For AESA addresses, if the address prefix is an odd number of characters, the
Provisioning Server stuffs the last 4 bits of the last octet with zeros, thereby appending
a zero to the address prefix.

For information on the convention used to specify SVC addresses, refer to“SVC
Addressing” on page 1-42.

Scn
ork

with
h.

used
ts, of
ts 1

ed by
 side
I.

 use
Descriptions of Object Types

CVT_SvcSecScn

This object exists on the network level. Its name is used by the AssignedSvcSec
object to apply screening to an LPort. Modify and delete operations require netw
wide distribution; you cannot perform database-only modification on this object.

CVT_SvcSecScnActParam

This object exists under the LPort object and is populated/deleted automatically
LPort creation. One instance exists for each ATM UNI LPort on a CBX 500 switc

CVT_SvcUserPart

Use this object to set up the user part on a DTE LPort on a CBX 500 switch. It is
for dynamic address registration at a UNI. The user part address length is 7 octe
which End System Identifier (ESI) represents 6 octets and the selector represen
octet. The user part represents a partial SVC address associated with ATM DTE
LPorts on the node. The rest of the address is the network prefix, which is suppli
the network side of the UNI. To obtain an ATM address for a terminal on the user
of a Private UNI, append values for the user part to network prefix(es) for that UN

There can be zero or more UserParts configured on an LPort.

For information on the convention used to specify SVC addresses, refer to“SVC
Addressing” on page 1-42.

CVT_Switch

The Provisioning Server does not support adding or deleting switches; you must
CascadeView to do so. For an existing switch, you can read or modify any switch
attribute except for the CVA_SwitchName attribute, which is Read-Only.
NavisXtend Provisioning Server User’s Guide 1-36

CVT_TrafficDesc

The Provisioning Server provides support for maintaining a pool of ATM traffic
descriptors. The traffic descriptors are required for setting up forward and backward
traffic descriptors for Soft PVCs. Each traffic descriptor is identified by a name. An ID
is automatically associated with each name.

vice
sing

y

c
e

lates
es;

lid

e

,

Descriptions of Object Types

Depending on the Quality of Service (QoS) class you select and the Type of Ser
associated with it, you need to provide the PCR, SCR, and MBS values. Do so u
the attributes CVA_TrafficDescParam1, CVA_TrafficDescParam2, and
CVA_TrafficDescParam3. Only add and delete operations are supported for ATM
traffic descriptors.

CVT_TrafficShaper

Traffic shaper objects are located under PPort in the containment hierarchy. Onl
PPorts on the following cards can have traffic shaper objects:

• 1-port ATM IWU OC3 card

• 1-Port ATM CS/DS3 card

• 1-port ATM CS/E3 card

A traffic shaper object is not an independent object. It represents a group of traffi
shaper attributes under a particular PPort type. All the traffic shaper attributes ar
essentially the attributes for the belonging PPort. The traffic shaper attributes are
treated as a separate object to provide a clear user interface for the attributes.

Once a PPort is created through CascadeView, CascadeView automatically popu
the PPort with traffic shaper attributes. You can only modify traffic shaper attribut
the Provisioning Server does not support creating them.

When you issue a ListContained command on a traffic shaper object, the only va
parent object type is PPort.

CVT_VPN

Creation and deletion of VPN objects occur at the network level. Use the attribut
CVA_LPortVPNName to specify the VPN to which an LPort belongs. Setting
CVA_LPortVPNName to Public makes that LPort a normal public LPort. Similarly
NavisXtend Provisioning Server User’s Guide 1-37

use the attribute CVA_CircuitVPNName to specify the VPN to which a circuit
belongs. Both end points of a circuit may not belong to different VPNs.

ions
Valid Object Types for Operational Functions

Valid Object Types for Operational Functions
Table 1-4 lists the object types you can use when you issue the operational funct
and commands of the API and CLI.

Table 1-4. Valid Object Types for Operational Functions

Object Type
Add

Object
Add

Member
Delete
Object

Delete
Member Get

List
All List Modify

APS ✓ ✓ ✓

AssignedSvcSecScn ✓ ✓ ✓ ✓ ✓ ✓

Card ✓ ✓ ✓ ✓

Channel ✓ ✓ ✓ ✓

Circuit ✓ ✓ ✓ ✓ ✓

Customer ✓ ✓ ✓ ✓ ✓ ✓

LPort ✓ ✓ ✓ ✓ ✓ ✓

NetCac ✓ ✓ ✓

Performance Monitor ✓ ✓ ✓

PFdl ✓ ✓ ✓

PMP Circuit Leaf Endpt ✓ ✓ ✓ ✓ ✓

PMP Circuit Root Endpt ✓ ✓ ✓ ✓ ✓

PMP SPVC Leaf Endpt ✓ ✓ ✓ ✓ ✓

PMP SPVC Root Endpt ✓ ✓ ✓ ✓ ✓ ✓

PPort ✓ ✓ ✓ ✓
NavisXtend Provisioning Server User’s Guide 1-38

Service Name ✓ ✓ ✓ ✓ ✓ ✓

SMDS Address Prefix ✓ ✓ ✓ ✓ ✓ ✓

SMDS Alien Group
Address

✓ ✓ ✓ ✓ ✓ ✓

Valid Object Types for Operational Functions

SMDS Alien Individual
Address

✓ ✓ ✓ ✓ ✓ ✓

SMDS Country Code ✓ ✓ ✓ ✓ ✓ ✓

SMDS Group Screen ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SMDS Individual
Screen

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SMDS Local Individual
Address

✓ ✓ ✓ ✓ ✓ ✓

SMDS Netwide Group
Address

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SMDS Switch Group
Address

✓ ✓ ✓ ✓ ✓

Soft PVC Circuit ✓ ✓ ✓ ✓ ✓

SVC Address ✓ ✓ ✓ ✓ ✓

SVC Config ✓ ✓ ✓

SVC CUG ✓ ✓ ✓ ✓ ✓

SVC CUG Member ✓ ✓ ✓ ✓ ✓

SVC CUG Mbr Rule ✓ ✓ ✓ ✓ ✓

SVC Node Prefix ✓ ✓ ✓ ✓ ✓

SVC Prefix ✓ ✓ ✓ ✓ ✓

SVC Security Screen ✓ ✓ ✓ ✓ ✓ ✓

Table 1-4. Valid Object Types for Operational Functions (Continued)

Object Type
Add

Object
Add

Member
Delete
Object

Delete
Member Get

List
All List Modify
NavisXtend Provisioning Server User’s Guide 1-39

SVC SecScnActParam ✓ ✓ ✓ ✓

SVC UserPart ✓ ✓ ✓ ✓

Switch ✓ ✓ ✓ ✓

.

Object Attributes

Object Attri butes
For each of the managed objects supported by the Provisioning Server, there are
arguments (attributes) that can be read or configured through the API or CLI. An
argument list is represented as follows:

TheNavisXtend Provisioning Server Object Attribute Definitions lists the various
object types supported by the Provisioning Server and their associated attributes.
Refer to that guide to determine which attributes apply to which object types.

Traffic Descriptor ✓ ✓ ✓ ✓

Traffic Shaper ✓ ✓ ✓

Vitual Private Network ✓ ✓ ✓ ✓ ✓ ✓

In: Argument List represented as:

C An opaque pointer that is manipulated using utility functions

C++ A class that is manipulated using member functions.

CLI String representations of the attributes.

Table 1-4. Valid Object Types for Operational Functions (Continued)

Object Type
Add

Object
Add

Member
Delete
Object

Delete
Member Get

List
All List Modify
NavisXtend Provisioning Server User’s Guide 1-40

DSX
t

ask

sent

4 DS0
Bit Mask

Bit Mask
The 1-port, 24-channel Fractional T1 card and the 4-port, 24-channel Fractional
card use a 24-bit bit mask to represent the channels. Bits 0 through 23 represen
channels 1 through 24, respectively. To allocate a channel for an LPort, set the
appropriate bit to 1. To set the attribute CVA_LPortFractionalDs0s or
CVA_PPortAllocatedChannels, create a numeric value where the appropriate bits are
set.

For example, to allocate channels 6 and 7, the bit mask would be expressed as:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

The decimal number for this bit mask is 96. The hexadecimal number for this bit m
is 0x60.

The 4-port, 30-channel Fractional E1 card uses a 31-bit length bit mask to repre
the channels. Bits 0 through 30 representing channels 1 through 31, respectively. To
allocate a channel for an LPort, set the appropriate bit to 1. You can set any bit except
bit 15, which represents channel 16 (reserved for internal use).

With the CLI, you can input hexadecimal numbers. You must prefix each hexadecimal
number with 0x. The CLI output is only in decimal numbers.

The channelized DS3 card uses a 28-bit mask to represent the DS1 channels. 2
channels are associated with each DS1 channel. When an LPort is created on a
channel, the corresponding channel’s bit in the DS1 channel bit mask is set to 1.
Figure 1-6 shows the corresponding DS1 channel marked with an X. All 24 associated
DS0s on the selected DS1 channel are automatically set by default, as shown in the
figure.

28 DS1 channels

x

NavisXtend Provisioning Server User’s Guide 1-41

Figure 1-6. Representation of the DS1 Channel Bit Mask

24 DS0 channels

x x

ess.

 last 4

nBits
SVC Addressing

SVC Addressing
SVC addresses are represented as strings, using the following convention:

<Address-Format-Type-ID>-<Address-Prefix>-<nBits>

Address-Format-Type-ID is the number that represents the format of the SVC addr
Valid values are as follows:

1 — E.164native

2 — DCCAESA

3 — ICDAESA

4 — E.164AESA

5 — CustomAESA

6 — DefaultRoute

7 — UserPart

Address-Prefix is the complete SVC address prefix. For AESA addresses, if the
address prefix is an odd number of characters, the Provisioning Server stuffs the
bits of the last octet with zeros, thereby appending a zero to the address prefix.

nBits is the number of bits. This field is optional for all address formats except for
DefaultRoute. For DefaultRoute, you must specify the number of bits as zero.

For other address formats, if you omit this field, the Provisioning Server calculates
the value and appends it to the address prefix. The algorithms used to calculate
values are presented inTable 1-5.
NavisXtend Provisioning Server User’s Guide 1-42

rsion:

s an

, the

 used
SVC Addressing

String Conversion

In the following cases, the Provisioning Server performs an address string conve

• When you omit the nBits field, the Provisioning Server calculates and append
nBits value to the prefix address.

• When an address prefix of an AESA address is an odd number of characters
Provisioning Server appends a zero to the prefix address.

A converted string is equivalent to the original string. Either address string can be
in an operation.

Each of the address formats is described in the following sections.

Table 1-5. Calculated nBits Values

Address Format Type Address-Format-Type-ID Calculated nBits Value

E.164native 1 string length of address prefix * 8

DCCAESA 2 (integral-part-of((string length of
address prefix + 1)/2)*8)

ICDAESA 3 (integral-part-of((string length of
address prefix + 1)/2)*8)

E.164AESA 4 (integral-part-of((string length of
address prefix + 1)/2)*8)

CustomAESA 5 (integral-part-of((string length of
address prefix + 1)/2)*8)

UserPart 7 56
NavisXtend Provisioning Server User’s Guide 1-43

E.164native

Specify an E.164native address as a numeric string of 1 - 15 characters.

For example:

1-12345

e
tes a

e
of 2 -

fs the
refix.
SVC Addressing

where 1 specifies the address format type E.164native, and 12345 represents th
address prefix. Since no nBits value is specified, the Provisioning Server calcula
value and appends it to the address. The string is converted to:

1-12345-40

AESA Addresses

Specify an AESA address as a hexadecimal string. The first two characters of th
address prefix represent the AFI value. The address prefix must be in the range
40 characters. The number of bits must be in the following range:

(integral-part-of((string length of address - 1)/2)*8)< nBits≤
(integral-part-of((string length of address + 1)/2))*8

The minimum value for nBits is 8.

In the case of CustomAESA format, the AFI value can be any two hexadecimal
characters.

If the address prefix is an odd number of characters, the Provisioning Server stuf
last 4 bits of the last octet with zeros, thereby appending a zero to the address p

Standard AFI values are:

39 — DCCAESA

45 — E.164AESA

47 — ICDAESA

Example 1

2-39
NavisXtend Provisioning Server User’s Guide 1-44

where 2 specifies the address format typeDCCAESA, and 39 represents the address
prefix (consisting of the AFI value only).

Since no nBits value is specified, the Provisioning Server calculates a value and
appends it to the address. The string is converted to:

2-39-8

ess
 the

, the

rver
SVC Addressing

Example 2

2-391234567890abcde

where 2 specifies the address format typeDCCAESA, and 39123456789abcde
represents the address prefix. Since no nBits value is specified, the Provisioning
Server calculates a value and appends it to the address. And, because the addr
prefix is an odd number of characters, the Provisioning Server appends a zero to
address prefix. The string is converted to:

2-391234567890abcde0-72

Example 3

2-391234567890abcde-70

where 2 specifies the address format typeDCCAESA, 391234567890abcde
represents the address prefix, and 70 represents the nBits value. In this example
valid range for nBits is:

(integral-part-of((17 - 1)/2)*8)< nBits≤ (integral-part-of((17 + 1)/2))*8

64 < nBits≤ 72

Because the address prefix is an odd number of characters, the Provisioning Se
appends a zero to the address prefix. The string is converted to:

2-391234567890abcde0-70

Example 4

5-ff1234-23

where 5 specifies the address format typeCustomAESA, ff1234 represents the
NavisXtend Provisioning Server User’s Guide 1-45

address prefix (with AFI value ff), and 23 represents the nBits value. In this example,
the valid range for nBits is:

(integral-part-of((6 - 1)/2)*8)< nBits≤ (integral-part-of((6 + 1)/2))*8

16 < nBits≤ 24

le:

ess

sents
ulates

er

t

Class B Addressing

DefaultRoute

Specify a Default Route address as the address prefix 00 and 0 bits. For examp

6-00-0

where 6 specifies the address format type DefaultRoute, 00 represents the addr
prefix, and 0 represents the number of bits.

UserPart

Specify a User Part address as a hexadecimal string of 14 characters.

The value for nBits is 56.

For example:

7-1234567890abcd

where 7 specifies the address format type UserPart, and 1234567890abcd repre
the address prefix. Since no nBits value is specified, the Provisioning Server calc
a value and appends it to the address:

7-1234567890abcd-56

Class B Addressing
The Provisioning Server treats all IP Addresses as Class B addresses. The serv
interprets all addresses as follows:

• First 2 bytes of an IP address are used as the network ID.

• Second 2 bytes of an IP address are used as the switch ID.

The Provisioning Server uses the third byte of the address as the Class B subne
NavisXtend Provisioning Server User’s Guide 1-46

number. For example, the server interprets the following network address:

128.100.111.0

as network address 128.100.0.0 and subnet number 111.

ion
nd an
uld

ral

o do
General API Usage

General API Usage
This section provides the basic procedures for performing operations with the
Provisioning Server API.

The API operates by establishing a session to the Provisioning Server. The sess
maintains internal context between the client and the server: it opens a socket a
associated file descriptor. More than one session can be open at a time. You sho
close a session before the program terminates.

C Program

To use most of the C commands, a client program must follow the following gene
steps:

1. IssueCvConnect to establish a session with the Provisioning Server.

2. Identify the object to be operated on. To do so, issueCvCreateObjectTypeId to
fill in the CvObjectId structure.

3. Identify necessary arguments (object attributes) and set values, if needed. T
so, either:

• Issue a single function (CvArgsMakeVals or CvArgsMakeIds) that takes a
variable number of arguments and builds the required data structure.

• Issue a series of utility functions that create (CvArgsMake) and fill in
(CvArgsSetAttrType) the required data structure.

4. Issue an operational function on the object.

5. Useselect loop processing functions to receive and process the response.

6. Once the request has been processed, issueCvArgsFree to free the memory used
by the argument list.
NavisXtend Provisioning Server User’s Guide 1-47

7. When the application exits, issueCvClose to terminate the session with the
Provisioning Server.

teps:

o do

r. To
General API Usage

C++ Program

To use most of the C++ commands, a client program must follow these general s

1. Establish a session with the Provisioning Server. To do so, create aCvClient class
and issue theCvClient::open function to passCvClient arguments that provide
session context.

2. Identify the object to be operated on. To do so, create and set values in a
CvClient::ObjectId object.

3. Identify necessary arguments (object attributes) and set values, if needed. T
so, create and set values in aCvClient::Args object.

4. Issue an operational function on the object.

5. Useselect loop processing functions to receive and process the response.

6. When the application exits, terminate the session with the Provisioning Serve
do so, either:

• IssueCvClient::close. This function does not delete theCvClient class
object, but does terminate the session with the Provisioning server.

• Use theCvClient destructor.
NavisXtend Provisioning Server User’s Guide 1-48

 a new
s

2

Installation and
Administration

This chapter describes hardware and software requirements and how to perform
installation of the Provisioning Server and the Application Toolkit. It also describe
the steps required for the following administrative tasks:

• Setting environment variables to configure the various components of the
Provisioning Server system

• Stopping and restarting the Provisioning Server and the CLI

• Troubleshooting problems with the Provisioning Server

• Developing a provisioning application
NavisXtend Provisioning Server User’s Guide 2-1

gured.
Prerequisites

Prerequisites
This section describes the hardware and software required by the NavisXtend
Provisioning Server. This product requires two workstations, as follows:

• Provisioning Server

• Provisioning client

Provisioning Server Requirements

The minimum workstation requirement for the Provisioning Server is a SunSparc 5
workstation or equivalent with the following minimum hardware:

• 70 MB disk

• CD-ROM drive

The CPU and RAM requirements for the Provisioning Server depend on the number
of clients that will issue requests to the server. Typically, CPU or RAM requirements
are less than those required for a CascadeView installation. For details, refer to the
CascadeView/UX Network Management Station Installation Guide.

The Provisioning Server installation utilizes the CascadeView-specific installation
procedures. Thus, CascadeView/UX, Version 2.4.3 or 2.5 must be installed on the
workstation to at least the point where the Sybase database is installed and confi
If the software is already installed, you do not need to reinstall it. For instructions,
refer to theCascadeView/UX Network Management Station Installation Guide.

Before you install the Provisioning Server software, verify that the following software
programs are installed:

Sun Microsystems SunSoft™ Solaris® 2.4 or 2.5.1 operating environment.

Sybase Open Server™, Release 4.9.2 or 11 — The relational database software
NavisXtend Provisioning Server User’s Guide 2-2

program for storing database information and providing backup and recovery of
database files. This software must be installed on the network and the Provisioning
Server must be a client of that database.

is
nd

c

re

am;

r

-area
Prerequisites

CascadeView/UX, Version 2.4.3 or 2.5 — The Provisioning Server installation
utilizes the CascadeView-specific installation procedures. Thus, at a minimum, th
software must be installed to the point where the Sybase database is installed a
configured.

Provisioning Client Requirements

The minimum workstation requirement for the Provisioning client is any SunSpar
workstation or equivalent.

Before you install the Application Toolkit software, verify that the following softwa
programs are already installed on the workstation:

Sun Microsystems SunSoft Solaris 2.4 or 2.5.1 operating environment.

SPARCWorks™ compiler version 4.0 — The compiler required to compile a C or
C++ program. This software is required only if you plan to write a C or C++ progr
it is not required if you plan to use the CLI only.

SMIv2 MIB compiler — An SMIv2-compliant compiler required to compile the
Provisioning Server MIB. This software is required only if you plan to use the
Provisioning Server MIB; it isnot required if you plan to write a C or C++ program o
use the CLI only.

Network Requirements

The Provisioning Server must be configured in a TCP/IP network and must have
access to the Ascend switches.

The Provisioning client must have access to the Provisioning Server over a local
or wide-area network.
NavisXtend Provisioning Server User’s Guide 2-3

g

e
uires

g

Installation Instructions

Installation Instructions
This section describes how to install the Provisioning Server and the Provisionin
Server Application Toolkit.

For instructions on upgrading your Provisioning Server software from a previous
version, refer to theSoftware Release Notice for NavisXtend Provisioning Server.

For any updates to this installation procedure, see:

• Software Release Notice for NavisXtend Provisioning Server

• On-line version of this manual on CaseView

Installing the Provisioning Software in a Single-System
Configuration

This section describes how to install the Provisioning Server software on the sam
workstation as the SYBASE database and CascadeView/UX. The procedure req
that you already have CascadeView/UX installed and that the database contains
information on the switches that you wish to access through the server.

To install the Provisioning Server and the Application Toolkit, perform the followin
steps:

1. Log on as the root user and enter the root password.

2. Insert the Provisioning Server media into the media drive.

The installation script prompts you for the Sybase DSQUERY name,
CascadeView Sybase database name, and Sybase administrator name
and password. Determine these values before you begin the installation.
NavisXtend Provisioning Server User’s Guide 2-4

3. Enter the following command to start the installation script:

[media device]/install_NAVISeps

where [media device] is the name of the machine media device (for example,
/cdrom/cdrom0).

all

l the
on

rver
Installation Instructions

The pkgadd menu appears, listing the NAVISeps package.

The following packages are available:
1 NAVISeps NavisXtend Provisioning Server

(sparc) 02.00.01.00

Select package(s) you wish to process (or ‘all’ to process all
packages). (default: all) [?,??,q]:

4. Select the NavisXtend Provisioning Server package.

The installation utility prompts you to select the components you want to inst
on the machine.

c) Install NAVISXtend Client
s) Install NAVISXtend Server
b) Install both NAVISXtend Client and Server
q) Exit this install

Selection:

5. Specify which components you want to install on the machine. You can instal
Provisioning client (which includes the CLI, the Provisioning Server Applicati
Toolkit client libraries, and the client include files), the Provisioning Server, or
both. The Provisioning Server and client occupy approximately 50 MBytes of
disk space.

Keep in mind that if you choose to install only the Provisioning Server on a
machine, the CLI binaries and associated links will not be present on that se
machine.

If the installation utility detects another instance of the Provisioning Server
on your system, it prompts whether you want to remove that instance. If
you answer yes , it removes the instance and performs a fresh install. If
you answer no, the install script quits.
NavisXtend Provisioning Server User’s Guide 2-5

If you choose to install only the client on a machine, skip toStep 19.

6. When prompted, specify whether CascadeView is installed on the machine.

If you answer yes, the installation utility prompts you to enter the base directory
where CascadeView is installed.

7. Enter the path to the directory where CascadeView is installed.

Note
Depending on which version of Solaris is running on the workstation, the following prompt may appear before Step 4 or at Step 20 in the installation procedure:

Enter path to package base directory [?,q] :

ving

te a

abase.

s of
Installation Instructions

8. If the installation utility detects configuration files on your system, it prompts
whether you want to use these existing files for the installation (instead of ha
to enter configuration values). If you answeryes, the utility will create symbolic
links to the configuration files.

9. The installation utility prompts whether the filestart-server.sh was saved from a
previous installation and asks whether you want to re-use the file for this
installation. If you answeryes, the utility prompts you for the path to the file.

10. If the installation utility detects MIB files in /opt/CascadeView/snmp_mibs, it
prompts whether you want to create symbolic links to the MIB files in the
/opt/ProvServ/snmp_mibs directory. And, it prompts whether you want to crea
symbolic link for the Provisioning Server MIB file (provserv.mib) to in
/opt/CascadeView/snmp_mibs.

11. Indicate your choices to these prompts.

12. When prompted, enter the Sybase DSQUERY name.

13. When prompted, enter the Sybase Database name for the CascadeView dat

14. When prompted, enter the Sybase system administrator user name for the
CascadeView database.

15. When prompted, enter the system administrator password.

16. At the verification prompt, re-enter the system administrator password.

The installation utility displays the values you input and allows you to change
them.

17. Make any necessary changes.

18. When prompted, specify whether you want the installation utility to save copie
the configuration files andstart-server.sh at de-install time. If you answer yes,
the utility prompts you for the path where you want to save the file.
NavisXtend Provisioning Server User’s Guide 2-6

19. The installation utility displays the confirmation message:

Install NAVISXtend 02.00.01.00? (y) [y,n,?,q]

20. Entery to continue.

Installation Instructions

The installation utility prompts you to enter the package base directory.

Enter path to package base directory [?,q]:

21. Enter the path to the directory where you want the package installed.

The installation utility performs various verification functions and displays the
message:

This package contains scripts which will be executed with
super-user permission during the process of installing this
package.

Do you want to continue with the installation of this package
[y,n,?]

22. Enter y to continue.

The installation utility completes the installation and displays the message:

Installation of <NAVISeps> was successful.

The installation of the Provisioning Server is complete. Before you run the server,
perform the post-installation tasks described in “Post-Installation Tasks” on page 2-8.

Installing the P rovisioning Software in a Two-System
Configuration

This section describes how to install the Provisioning Server software on a separate
host from CascadeView/UX and SYBASE. For information on installing a
two-system configuration, refer to theCascadeView/UX Network Management Station
Installation Guide.

1. In CascadeView, add an NMS entry to each switch the Provisioning Server will
provision. Specify the IP address of the host on which the Provisioning Server
will reside.
NavisXtend Provisioning Server User’s Guide 2-7

2. In CascadeView, add an NMS path, specifying the IP address of the host on which
the Provisioning Server will reside.

3. On the host on which the Provisioning Server will reside, log in as the root user
and enter the root password.

Note
Depending on which version of Solaris is running on the workstation, this prompt may appear either here or before Step 4 in the installation procedure.

ase

lete.

d in

oning

e
 To
Installation Instructions

4. Create the /opt/sybase directory.

5. On the CascadeView host, copy the file /opt/sybase/interfaces to the /opt/syb
directory on the host on which the Provisioning Server will reside.

6. Install the Provisioning Server. Follow the instructions in“Installing the
Provisioning Software in a Single-System Configuration” on page 2-4.

The installation of the Provisioning Server in a two-system configuration is comp

Before you run the server or the CLI, perform the post-installation tasks describe
the next section.

Post-Installation Tasks

This section describes post-installation steps you need to perform on the Provisi
Server, the CLI, and the Provisioning client.

Testing the Server

During server installation, the init program (/etc/inittab) was modified to cause th
system to automatically resart the server process whenever the system reboots.
start the server manually for testing, issue the following command:

/sbin/init Q <Return>

This command causes the init program to read the file /etc/inittab.

Test the server to make sure that it is running and is accessible. To do so:

1. Log on as a user other than root.

2. Issue a CLI command for an existing switch in the CascadeView database:

/opt/ProvServ/bin/cvget switch.nn.nn.nn.nn -Location<Return>
NavisXtend Provisioning Server User’s Guide 2-8

where nn.nn.nn.nn is the decimal IP address of the switch. If the Provisioning
Server is operating, thecvget command prints the location of the switch you
specified. Verify that the returned location is valid for that switch.

For instructions on how to troubleshoot problems with the server, refer to
“Troubleshooting Problems” on page 2-25.

g

are
e
r’s

ally,

se, or
Installation Instructions

Setting Environment Variables

There are several environment variables you can set to configure the Provisionin
Server. Specifically, you can:

• Specify the server’s local port

• Specify the server’s core file location

• Enable server trace files

• Control certain SNMP parameters

For instructions on how to set these environment variables, refer to“Configuring the
Provisioning Server” on page 2-17.

If the CLI and the Provisioning Server are located on the same host, the CLI can
locate the Provisioning Server by default. If the CLI and the Provisioning Server
remote from one another, you need to identify the location and port number of th
Provisioning Server. To do so, set the following environment variables in the use
shell start-up script (such as .cshrc, .login, or .profile):

CV_CLI_SERVER_HOST — Set this variable to the IP address of the remote
Provisioning Server. Specify the address in either numeric format (such as
152.148.50.2) or in text format (such as provserv.xyz.com).

CV_CLI_SERVER_PORT — Set this variable to the port number of the remote
Provisioning Server.

There are other environment variables you can set to configure the CLI. Specific
you can:

• Specify whether updates are made to the network component and the databa
to the database only

• Specify security settings
NavisXtend Provisioning Server User’s Guide 2-9

• Control certain SNMP parameters

For instructions on how to set these environment variables, refer to“Configuring the
CLI” on page 2-13.

er. To

ting

ch.

the
new
I.

e
 the
Installation Instructions

Testing the CLI

Test the CLI to make sure that it is running and can access the Provisioning Serv
do so:

1. Log on as a user other than root.

2. Issue a CLI command for an existing switch in the CascadeView database:

/opt/ProvServ/bin/cvget switch.nn.nn.nn.nn -Location<Return>

where nn.nn.nn.nn is the decimal IP address of the switch. If the CLI is opera
and can access the Provisioning Server, thecvget command prints the location of
the switch you specified. Verify that the returned location is valid for that swit

For instructions on how to troubleshoot problems with the CLI, refer to
“Troubleshooting Problems” on page 2-25.

Recompiling an Existing Provisioning Client

If you have a Provisioning application that was built with a previous version of the
Provisioning Server Application Toolkit and you want to use the new features of
Provisioning Server API, you need to make the necessary code changes for the
functions and attributes, and recompile and relink your program with the new AP

If you do not want to use the new features of the Provisioning Server API, no cod
changes are necessary. You need only to recompile and relink your program with
current version of the API include files and libraries.

Installed Files

Once you install the toolkit, the CLI commands and the files you need to write a
program with the API are present on the workstation hard disk:

Command line interface and binary file — Contained in the file
NavisXtend Provisioning Server User’s Guide 2-10

/opt/ProvServ/bin/cli, as well as various links contained in /opt/ProvServ/bin.

Client libraries — Contained in the directory /opt/ProvServ/lib.

Client include files — Contained in the directory /opt/ProvServ/include.

e

e

Installation Instructions

Sample code — Contained in the directory /opt/ProvServ/src. The C sample code is
in the file provSample.c; the C++ sample code is in the files ProvSample.C and
ProvSample2.C.

Programming Files

Table 2-1 lists the files (located in the directory /opt/ProvServ/include) necessary for
development of an NavisXtend Provisioning client program.

Table 2-1. Programming Files for Client Development

File Description

ProvClient.h Header file for the C APIs; contains definitions and
function prototypes. If you are programming in C,
include this file in your source code.

CvClient.H Header file for the C++ APIs; contains definitions and
function prototypes. If you are programming in C++,
include this file in your source code.

CvDefs.H Contains some definitions that are common to both th
C and C++ APIs. The ProvClient.h and CvClient.H
files contain a#include statement that incorporates
CvDefs.H. Therefore, as long as you include either
ProvClient.h or CvClient.H, you do not need to
explicitly include CvDefs.H in your source code.

CvObjectType.H Defines the enumerated object types used by both th
C and C++ APIs. The ProvClient.h and CvClient.H
files contain a#include statement that incorporates
CvObjectType.H. Therefore, as long as you include
either ProvClient.h or CvClient.H, you do not need to
explicitly include CvObjectType.H in your source
NavisXtend Provisioning Server User’s Guide 2-11

code.

Installation Instructions

CvArgId.H Defines all argument IDs used by both the C and C++
APIs. TheProvClient.h andCvClient.H files contain a
#include statement that incorporatesCvArgId.H.
Therefore, as long as you include eitherProvClient.h
or CvClient.H, you do not need to explicitly include
CvArgId.H in your source code.

CvParamValues.H Defines the values for each of the enumerated
attributes used by both the C and C++ APIs. Include
this file in your source code.

CvObjectId.H Defines theCvObjectId structure used by the C API to
identify objects.ProvClient.h contains a#include
statement that incorporatesCvObjectId.H. Therefore,
as long as you include theProvClient.h file, you do
not need to explicitly includeCvArgId.H in your
source code.

CvUSL.H Defines simple wrapper classes for various unsigned
long data types used by the C++ APIs.CvClient.H
contains a#include statement that incorporates
CvUSL.H. Therefore, as long as you include
CvClient.H, you do not need to explicitly include
CvUSL.H in your source code.

CvE164Address.H Defines a helper class used in the C++ APIs.
CvClient.H contains a#include statement that
incorporatesCvE164Address.H. Therefore, as long as
you includeCvClient.H, you do not need to explicitly
includeCvE164Address.H in your source code.

Table 2-1. Programming Files for Client Development (Continued)

File Description
NavisXtend Provisioning Server User’s Guide 2-12

CvSVCAddress.H Defines a helper class used in the C++ APIs.
CvClient.H contains a#include statement that
incorporatesCvSVCAddress.H. Therefore, as long as
you includeCvClient.H, you do not need to explicitly
includeCvSVCAddress.H in your source code.

f the

ches

se, or

art-up
Setting Environment Variables

Setting Environment Variables
This section describes how to set environment values to configure the behavior o
CLI, the Provisioning client, and the Provisioning Server. To configure the
Provisioning Server, add the environment variables to the start-up script that laun
the server. To configure the Provisioning client or the CLI, add the environment
variables to the user’s shell start-up script, such as .cshrc, .login, or .profile.

Configuring the CLI

There are several environment variables you can use to configure the CLI.
Specifically, environment variables perform the following:

• Identify the Provisioning Server to which the CLI sends requests.

• Specify whether updates are made to the network component and the databa
to the database only.

• Specify security settings.

• Control certain SNMP parameters.

The best way to set the environment variables is to add them to the user’s shell st
script (such as .cshrc, .login, or .profile)

CvErrors.H and
CvErrors.h

Define the errors that can be returned by the APIs as
well as errors implemented by CascadeView. You do
not need to include either of these files in your source
code.

Table 2-1. Programming Files for Client Development (Continued)

File Description
NavisXtend Provisioning Server User’s Guide 2-13

are
e

the

fault.

ate

cating

nent
Setting Environment Variables

Identifying the Provisioning Server to the CLI

If the CLI and the Provisioning Server are running on the same host, the CLI can
locate the Provisioning Server by default. If the CLI and the Provisioning Server
remote from one another, you need to identify the location and port number of th
Provisioning Server. To do so, set the following environment variables:

CV_CLI_SERVER_HOST — Set this variable to the IP address or hostname of
remote Provisioning Server. Specify the address in numeric format (for example,
152.148.50.2). Specify the hostname in text format (for example,provserv.xyz.com).
If you do not set this variable, the CLI uses the local host by default.

CV_CLI_SERVER_PORT — Set this variable to the port number of the remote
Provisioning Server. If you do not set this variable, the CLI uses port 4001 by de

Specifying Modification Type

You can specify whether updates are made to the network components and the
database, or to the database only. Set the following environment variable:

CV_CLI_MOD_TYPE — Set this variable to the number that represents the upd
method, as follows:

1 — Sends updates to both the network component and the database. If the
network component updates successfully, the database is updated.

4 — Sends updates to the database only.

5 — Sends updates to the database only and sets a flag in the database indi
that the object is out of synchronization with the network component.

If you do not set this variable, the CLI sends updates to both the network compo
and the database by default.
NavisXtend Provisioning Server User’s Guide 2-14

ing
. The

is
re,
rver.

to
r
ble,

ired

red

 the

u do
Setting Environment Variables

Specifying Security Settings

By default, the Provisioning Server accepts requests from the CLI without requir
authorization. You can implement a security feature that authenticates user logins
feature is intended to prevent users from accidentally modifying the database; it not
intended to prevent intentional misuse by users. To implement the security featu
you must specify environment variables for both the CLI and the Provisioning Se
To do so for the CLI, set the following environment variables:

CV_CLI_USE_LOGINS — Set this variable to any value (including a null value)
turn on the security feature. If you do not set this variable, the Provisioning Serve
accepts requests from the CLI without requiring authorization. If you set this varia
you must also set the following variables:

CV_CLI_USERNAME — Set this variable to the username character string requ
by CascadeView (for example, operator).

CV_CLI_PASSWORD — Set this variable to the password character string requi
by CascadeView.

The username and password character strings are sent over the network as
nonencrypted text.

To fully implement the security feature, you must also specify security settings on
server side. For instructions, refer to“Implementing the Security Feature” on page
2-24.

Controlling SNMP Parameters

You can specify how certain SNMP parameters are controlled. To do so, set the
following environment variables:

CV_SNMP_REQUEST_TIMEOUT — Set this variable to the amount of time (in
0.001 second increments) that the CLI waits for a response from the server. If yo
not set this variable, the CLI uses the value 256 by default.
NavisXtend Provisioning Server User’s Guide 2-15

CV_SNMP_MAX_RETRIES — Set this variable to the number of times that the
CLI retries a request that times out. If you do not set this variable, the CLI uses the
value 0 by default.

g

art-up

 file
tion

ble,

le.

ou do
Setting Environment Variables

Configuring the Provisioning Client

There are several environment variables you can set to configure the Provisionin
client. Specifically, environment variables perform the following functions:

• Enable a client trace file

• Control certain SNMP parameters

The best way to set the environment variables is to add them to the user’s shell st
script (such as .cshrc, .login, or .profile).

Enabling a Client Trace File

You can specify that the client create a trace file. Such a file can be useful for
debugging your Provisioning client. It is recommended that you enable the trace
until the Provisioning Server and your Provisioning client are running in a produc
environment. To enable a client trace file, set the following environment variable:

CV_CLIENT_TRACE_FILE — Set this variable to the pathname of the file to
contain the trace output (for example, /tmp/ctrace.log). If you do not set this varia
no trace file is created.

Once you enable a client trace file, each session of the client is recorded in the fi
Output is continuously appended to the file. If you are not debugging your
Provisioning client, it is recommended that you periodically delete the file.

Controlling SNMP Parameters

You can specify how certain SNMP parameters are controlled. To do so, set the
following environment variables:

CV_SNMP_REQUEST_TIMEOUT — Set this variable to the amount of time (in
0.001 second increments) that the client waits for a response from the server. If y
NavisXtend Provisioning Server User’s Guide 2-16

not set this variable, the client uses the value 256 by default.

CV_SNMP_MAX_RETRIES — Set this variable to the number of times that the
client retries a request that times out. If you do not set this variable, the client uses the
value 0 by default. For non-MIB clients, you can set this variable to any value. For
MIB clients, you can set this variable to any value only if you set the variable
CV_SNMP_DISCARD_RETRY to 1.

g

by

se
Setting Environment Variables

Configuring the Provisioning Server

There are several environment variables you can set to configure the Provisionin
Server. Specifically, environment variables perform the following functions:

• Specify the server’s local port and the MIB agent’s port

• Specify the server’s core file location

• Enable server trace files

• Control certain SNMP parameters

• Control ListContained context timeout

• Control MIB cache

• Control object locking

• Specify SNMP community strings

• Specify how the server formats SMDS addresses

• Implement security feature

The Provisioning Server reads its configuration settings from two files also used
CascadeView. These shared configuration files are as follows:

• /opt/ProvServ/etc/cvdb.cfg

• /opt/ProvServ/etc/cascadeview.cfg

Rather than modifying Provisioning Server’s environment variables directly in the
files (which would also affect CascadeView), you can enable them in the server’s
start-up script (/opt/ProvServ/bin/start-server.sh). Look for the invocation ofcvdb.cfg
andcascadeview.cfg in start-server.sh and make the necessary modifications after
that point in the file.
NavisXtend Provisioning Server User’s Guide 2-17

.

ice
h
 to

et

l for

ry
lid
Setting Environment Variables

Identifying the Provisioning Server Port

The Provisioning Server uses a command line argument to identify which port to
listen for API and CLI requests. To specify this command line argument, set the
following environment variable instart-server.sh:

CV_PSRV_ARGS — Set this variable to the command-lport and the port number.
Enclose the command in quotation marks, for example:

“-lport 4002”

 If you do not set this variable, the Provisioning Server uses port 4001 by default

Identifying the MIB Agent Port

The Provisioning Server implements an SNMP agent as a separate entity to serv
MIB interface requests. The server uses an environment variable to identify whic
port to listen for SNMP requests. This port is different from the port number used
listen for API and CLI requests.

To specify this MIB agent port, set the following environment variable in
start-server.sh:

CV_SNMP_AGENT_PORT — Set this variable to the port number. If you do not s
this variable, the Provisioning Server uses port 9090 by default.

Specifying the Core File Location

If the Provisioning Server crashes, it creates a core file. Such a file can be usefu
debugging the server. The core file is written to the Provisioning Server’s working
directory (/tmp by default). You can specify the directory where the Provisioning
Server runs and where it writes any core files. You may want to specify a directo
other than the default if /tmp gets deleted frequently and you want to ensure a va
core file. To specify a working directory, set the following environment variable in
start-server.sh:
NavisXtend Provisioning Server User’s Guide 2-18

CV_WORKING_DIR — Set this variable to the pathname of the directory. If you do
not set this variable, the Provisioning Server writes its core file to the /tmp directory
by default.

bled

ing in
t

ce

iew

.

in
n to

 the
Setting Environment Variables

Enabling Server Trace Files

By default, the Provisioning Server creates three trace files, two of which are ena
by environment variables specified in the configuration filecascadeview.cfg. Rather
than turning these trace files on or off directly incascadeview.cfg (which would also
affect CascadeView), you can enable them in the server’s start-up script
(/opt/ProvServ/bin/start-server.sh). Look for the invocation ofcascadeview.cfg in
start-server.sh and make the necessary modifications after that point in the file.

These files can be useful for troubleshooting and diagnosing problems. It is
recommended that you enable the trace files until the Provisioning Server is runn
a production environment. To enable the trace files, set the following environmen
variables:

CV_TRACE_ENABLE — Set this variable to 1 to enable the application-level tra
output for the server. If you set this variable, you must also set theCV_TRACEFILE
variable.

CV_TRACEFILE — Set this variable to the pathname of the file to contain the
application-level trace output for the server. To avoid conflicts with the CascadeV
trace file, the suffix.psrv will be appended to the filename you specify. By default,
this trace file is written to the /tmp directory.

CVDB_TRACE_FILE_NAME — Set this variable to the pathname of the file to
contain the database trace output for the server. To avoid conflicts with the
CascadeView trace file, the suffix.psrv will be appended to the filename you specify
By default, this trace file is written to the /tmp directory.

CV_PSRV_TRACE_FILE — Set this variable to the pathname of the file to conta
trace output specific to the Provisioning Server. By default, this trace file is writte
the /tmp directory and is calledstrace.log.

Once you enable a trace file, specific activity is recorded in the file. Output is
continuously appended to the file. It is recommended that you periodically delete
trace files.
NavisXtend Provisioning Server User’s Guide 2-19

If you are troubleshooting a problem, it can be useful to know what kinds of
transactions occur between the Provisioning Server and the Provisioning client. For
this reason, you should enable the client trace file as well. For instructions, refer to
“Enabling a Client Trace File” on page 2-16.

f you

es the

 1,
SNMP
ssing,
s the

nless

ts.
ned
 time

in

uest
t to
Setting Environment Variables

Controlling SNMP Parameters

You can specify how certain SNMP parameters are controlled. To do so, set the
following environment variables instart-server.sh:

CV_SNMP_REQUEST_TIMEOUT — Set this variable to the amount of time (in
0.001 second increments) that the server waits for a response from the switch. I
do not set this variable, the server uses the value 256 by default.

CV_SNMP_MAX_RETRIES — Set this variable to the number of times that the
server retries a request that times out. If you do not set this variable, the server us
value 5 by default. It is recommended that you keep this setting as the default.

CV_SNMP_DISCARD_RETRY — Set this variable to 1 to enable the server to
discard multiple SNMP request retries from a MIB client. If you set this variable to
the server checks the Request ID, the IP address, and the port number of every
request. If these values match those of a request that the server is currently proce
the server ignores the retry request. If you do not set this variable, the server use
value 1 by default. It is recommended that you keep this setting as the default, u
your SNMP client generates SNMP PDUs without unique Request IDs or port
numbers.

Controlling Context Timeout

The Provisioning Server maintains context for outstanding ListContained reques
The server allows 500 ListContained requests to be outstanding. Any ListContai
request for which a NextObject request has not been issued within a configurable
period is subject to deletion to make room for a new ListContained request to be
processed. To configure this time period, set the following environment variable
start-server.sh:

CV_PSRV_CONTEXT_TIMEOUT — Set this variable to the amount of time (in
minutes) that the server waits for a response to a ListContained request. Any req
for which a NextObject request has not been issued in that time period is subjec
NavisXtend Provisioning Server User’s Guide 2-20

deletion. If you do not set this variable, the server uses the value 10 by default. It is
recommended that you keep this setting as the default.

 a

erver

result
nce
e is
ater
lue

t
che.

ent.
not
rrors
lue

LI,
parent
ked.
Setting Environment Variables

Controlling MIB Cache

The Provisioning Server implements a MIB cache that stores data in memory for
fixed time period. The server uses this cache to optimize performance ofget-next
requests and to store data to be committed to the database during transactions
involving multiple PDUs. Each table row stored in cache has a timestamp. The s
uses an environment variable to purge older data by row.

To configure this purge time period, set the following environment variables in
start-server.sh:

CV_SNMP_ROWENTRY_TIMEOUT — Set this variable to the amount of time
(in seconds) that the server stores a particular row of data in cache during aget-next
request. Based on this variable, the server flushes out entries in MIB cache that
from aget-next operation. Thus, the server uses this variable to optimize performa
of get-next requests. The minimum value of this variable is 60, the maximum valu
1800. These values apply, even if you set a value lower than the minimum or gre
than the maximum. If you do not set this variable, the server uses the timeout va
900 by default.

CV_SNMP_CMDERROR_CACHE_TIMEOUT — Set this variable to the amoun
of time (in seconds) that the server stores Command Error Table messages in ca
The Command Error Table contains error messages generated by the SNMP ag
Any error message older than this timeout value is subject to deletion. If you do
set this variable, the server uses the timeout value 3600 by default. To save all e
generated during creation and modification transactions, set this variable to a va
greater than the value of the CV_SNMP_LOCK_TIMEOUT variable.

Controlling Object Locking

The Provisioning Server uses an object locking scheme for MIB objects in the
database that differs from the locking behavior of the Provisioning Server API, C
or CascadeView. For these interfaces, the steps associated with locking are trans
to the user. When an object is created or modified, its parent object becomes loc
NavisXtend Provisioning Server User’s Guide 2-21

The user specifies all the information needed to create or modify the object in one
PDU. Once the request completes, the parent becomes unlocked.

n
ust be
nt to

cked,
ify
g it.
nt

 you
e 900

s

Setting Environment Variables

By contrast, in the case of the MIB, the information needed to create or modify a
object may not be available in one PDU. As a result, the locks in the database m
held for a longer time. Thus, the steps associated with locking are not transpare
the user.

If the user initiates a transaction to create an object, the parent object becomes lo
preventing other users from modifying it. If the user initiates a transaction to mod
an object, the object itself becomes locked, preventing other users from modifyin
To configure the time period that objects are locked, set the following environme
variable instart-server.sh:

CV_SNMP_LOCK_TIMEOUT — Set this variable to the amount of time (in
seconds) that the server:

• Locks a parent object when a child object is being created

• Locks an object that is being modified

The maximum value of this variable is 1800. This maximum value applies, even if
set a greater value. If you do not set this variable, the server uses the timeout valu
by default.

Specifying Community Strings

The Provisioning Server supports two community names, one for Read-Only
operations and one for Read-Write operations. The community name provides a
mechanism for authentication and access-control at the SNMP agent.

The community strings are defined using the following environment variables in
start-server.sh:

CV_READONLY_COMMUNITY_STRING — Set this variable to the community
string to be used when making a Read-Only SNMP request. If you do not set thi
variable, the server uses the value ‘public’ by default.
NavisXtend Provisioning Server User’s Guide 2-22

CV_READWRITE_COMMUNITY_STRING — Set this variable to the
community string to be used when making a Read-Write SNMP request. If you do not
set this variable, the server uses the value ‘ascend’ by default.

If these environment variables are defined in the scriptstart-server.sh, the specified
strings take precedence. If they are not set in the script or if the server shell
environment does not define the variables, the server assumes the default values.

st is
 Error
e.

-Write
rror,

, set

dress
must
e to

1, the
r
s in

he
 dash

t. For
11 as
Setting Environment Variables

If the community name is not valid when you make an SNMP request, the reque
rejected and the SNMP agent returns a genError. You can access the Command
Table in the MIB to see if the source of the problem is an invalid community nam
Specify the Read-Only community name when you access the table, as that
community name is used for validation purposes.

When you make an snmp_get request, specify either the Read-Only or the Read
community name. If you use a different community name and you encounter an e
the error is not propagated to the Command Error Table.

Controlling SMDS Addresses

You can specify how the Provisioning Server formats SMDS addresses. To do so
the following environment variables instart-server.sh:

CV_DFLT_SMDS_CC — Set this variable to specify the default country code for
SMDS addresses. The server will prepend this default country code to a given ad
that does not specify the country code. When using multiple country codes, you
specify the country code for addresses that do not use the default code. You hav
create a country code before you can specify it as a default.

CV_DFLT_CC_PRT_ENABLE — Set this variable to control the format of
individual addresses in responses to List operations. When this variable is set to
default country code part of an address is returned in the List response. For othe
operations (AddObject, DeleteObject, Get, Modify), the server returns the addres
the same format used by the client.

CV_ SMDS_MASK_SIZE — Set this variable to specify the character length of t
address prefix in SMDS addresses. The server interprets characters preceding a
(-) as the country code part of the address, the nextn characters (specified by this
variable) as the prefix part of the address, and the remainder as the address par
example, if this variable is set to 6, the server interprets the address 1-97895211
follows:
NavisXtend Provisioning Server User’s Guide 2-23

1 - 9 7 8 9 5 2 1 1 1 1

Country Code Prefix Address

 CLI

tally

the

)
rver

 a user

, the
fer to
Stopping and Restarting the Provisioning Server

Implementing the Security Feature

By default, the Provisioning Server accepts requests from Provisioning client and
users without requiring authorization. You can implement a security feature that
authenticates user logins. The feature is intended to prevent users from acciden
modifying the database; it isnot intended to prevent intentional misuse by users. To
implement the security feature, you must specify environment variables for both
CLI and the Provisioning Server. To do so for the server, set the following
environment variable instart-server.sh:

CV_PSRV_USE_LOGINS — Set this variable to any value (including a null value
to turn on the security feature. If you do not set this variable, the Provisioning Se
accepts requests from clients without requiring user authorization.

Once you set this variable, any clients sending requests to the server must send
ID and password for authorization. For a Provisioning client, this is accomplished
when the client establishes the session with the Provisioning Server. For the CLI
security settings are specified through environment variables. For instructions, re
“Specifying Security Settings” on page 2-15.

Stopping and Restarting the Provisioning Server
To stop and restart the Provisioning Server running on a workstation:

1. On the host that runs the server, log on as the root user and enter the root
password.

2. Determine the process ID of the Provisioning Server, using the following
command:

/bin/ps -ef | grep provserv <Return>

The process ID is the second item in the resulting listing.
NavisXtend Provisioning Server User’s Guide 2-24

3. Kill the current server process, using the following command:

kill [server process id] <Return>

Once the server process is killed, the init program restarts the server.

r, the

ning

ow
witch.

eout
ting
Stopping and Restarting the CLI

Stopping and Restarting the CLI
To quit the CLI, press <Ctrl-C>. To restart the CLI, issue a CLI command.

Troubleshooting Problems
This section describes how to troubleshoot problems with the Provisioning Serve
provisioning application, and the CLI.

Problem: Requests Frequently Time Out

Symptoms

Either:

• CLI prints an error message

• API-based application receives an error status

Possible Causes and Solutions

Scenario 1: Error message 4109 (“Request to the server timed out”)

• The Provisioning Server may not be running or accessible to the client
workstation. Verify that the client can access the server and that the Provisio
Server is running. To do so, follow the procedure in“Testing the CLI” on page
2-10.

• The client’s timeout value may be too low. The client timeout value should all
for instances when the server times out and later retries a command to the s
Since the server’s second request may be successful, the client should not tim
while waiting for the server’s response. Adjust the client timeout value by set
NavisXtend Provisioning Server User’s Guide 2-25

the client CV_SNMP_REQUEST_TIMEOUT environment variable. Start with
the value 3000. If that value does not correct the problem, use the following
formula to determine a “worst case” client timeout value:
CV_SNMP_REQUEST_TIMEOUT =CV_SNMP_REQUEST_TIMEOUT *
CV_SNMP_MAX_RETRIES + n

rver,

nnot

ible
 the

the
Troubleshooting Problems

whereCV_SNMP_REQUEST_TIMEOUT is the timeout value for the server,
CV_SNMP_MAX_RETRIES is the retry value for the server andn is a factor that
allows for client-server round-trip. Start with ann value of 300. The result
(CV_SNMP_REQUEST_TIMEOUT) is the timeout value to set for the client.

For details on values to use for these environment variables for the client and se
refer to“Setting Environment Variables” on page 2-13.

Scenario 2: Error message 42 (“The SNMP request to the agent timed out”):

The Provisioning Server may take a long time to process a request because it ca
locate the network device specified in the request (such as a switch):

• If the request is intended to modify the switch, verify that the switch is access
from the server. To do so, remotely log into the Provisioning Server and issue
ping utility to elicit a response from the switch.

• If the request is intended to update the database only, retry the request with
modification type set to update the database only. For a CLI request, set the
CV_CLI_MOD_TYPE environment variable to 4 or 5 (refer to“Configuring the
CLI” on page 2-13.) For an API request, issue either the C function
CvSetModifyType or the C++ member functionCvClient::setModifyType ,
specifying that updates be made to the database only.

Problem: Object Is Locked by Others

Symptoms

Either:

• CLI prints an error message

• API-based application receives an error status
NavisXtend Provisioning Server User’s Guide 2-26

ked

st.
e

e

or
Troubleshooting Problems

Possible Causes and Solutions

Either a CascadeView user has the object locked or the object appears to be loc
when the client retries a request. To determine if the object is locked, change
directories to /opt/CascadeView/bin and execute thecv-release-locks.sh shell script.
The script lists the objects that are currently locked and who has them locked.

Scenario 1: Object Is Locked by CascadeView User

If the cv-release-locks.sh shell script indicates that a CascadeView user has the
object locked, either:

• Wait for the user to finish (or request that he or she finish) using the object.

• Call the Ascend Technical Assistance Center.

Scenario 2: Object Appears to Be Locked During Retries

If the cv-release-locks.sh shell script does not indicate that the object is locked, a
client timeout may have occurred while the server was still processing the reque
Then, when the client automatically retried the request, the object appeared to b
locked.

Adjust one of the following environment variables:

• Adjust the client timeout value by setting the client’s
CV_SNMP_REQUEST_TIMEOUT environment variable to a higher value. To
do so, follow the procedure in“Scenario 1: Error message 4109 (“Request to th
server timed out”)” on page 2-25.

• Adjust the client retry value by setting the CV_SNMP_MAX_RETRIES to 0. F
details on this environment variable for the client, refer to“Setting Environment

Do not use the cv-release-lock.sh script to release the locks. If you need
to release locks, call the Ascend Technical Assistance Center.
NavisXtend Provisioning Server User’s Guide 2-27

Variables” on page 2-13.

y
To

ou

tall

ands
 what
ands.

his
vide
LI
Troubleshooting Problems

Technical Support

The Ascend Technical Assistance Center (TAC) is available to assist you with an
problems encountered while using the NavisXtend Provisioning Server product.
contact the Ascend TAC, call 1-800-DIAL-WAN.

Information Checklist

Before contacting the Ascend TAC, review the following checklist to make sure y
have gathered all the information you need:

Software Version Number

Use the UNIX utility pkginfo to obtain information such as version number and ins
date for the NavisXtend Provisioning Server package:

pkginfo -l NAVISeps

Note the version number listed in the output.

Problem Report

Collect as much information as possible about the problem:

• For CLI problems, describe what commands caused the problem, what comm
preceded the problem, and how did the Provisioning Server respond (such as
error message was returned). If possible, provide the exact text for the comm

• For API problems, provide the source code that caused the problem. Try to
condense the problem to a few lines.

• You can use the API to create a CLI command that recreates the problem. T
alternative provides an easy way to recreate a problem without having to pro
code. The following code sample illustrates how to use the API to create a C
NavisXtend Provisioning Server User’s Guide 2-28

command:

char *argString = CvArgsToString(args);
char *objString = CvObjectIdToString(objid);
printf(“cvadd %s %s”, objString, argString);
CvStringFree(argString);
CvStringFree(objString);

 the

ese
er’s

sed

 the
r
cify
Troubleshooting Problems

Trace Files

Collect any trace files that may exist:

• Server trace files, which you enable using environment variables. By default,
these trace files are not produced. The easiest way to turn them on is to edit
start-server.sh script. They are usually written to the /tmp directory with the
filenamesstrace.log or the file suffix.psrv.

• Client trace files, which you enable using environment variables. By default, th
trace files are not produced. The easiest way to turn them on is to edit the us
.cshrc file and adding the following line:

setenv CV_CLIENT_TRACE_FILE /tmp/ctrace.log

This command writes the client trace filectrace.log to the /tmp directory.

If the resulting trace files are too large, collect the last 5000 lines of each file. If
necessary, compress the files using the GZIP program. If you send the compres
files to Ascend by email, UUENCODE the files, if necessary.

For more information on how to enable trace logs, refer to“Enabling Server Trace
Files” on page 2-19 and“Enabling a Client Trace File” on page 2-16.

Core Files

If the Provisioning Server crashes, it creates a core file. Collect the core file from
Provisioning Server’s working directory, which is either /tmp by default or anothe
directory you specify using an environment variable. For information on how spe
the working directory, refer to“Specifying the Core File Location” on page 2-18.
NavisXtend Provisioning Server User’s Guide 2-29

the
Troubleshooting Problems

Un-installation Instuctions

If you decide you want to un-install Version 2.0 of the Provisioning Server and
Application Toolkit, use the pkgrm utility:

1. To un-install the Provisioning Server components using pkgrm, enter:

pkgrm NAVISeps

The utility prompts you to verify the un-install:

The following package is currently installed:
1 NAVISeps NavisXtend Provisioning Server

(sparc) 02.00.01.00

Do you want to remove this package?

2. To un-install the NavisXtend Provisioning Server package, entery.

The un-installation utility displays the message:

Removing installed package instance <NAVISeps>

This package contains scripts which will be executed with
super-user permission during the process of removing this package.

Do you want to continue with the removal of this package [y,n,?, q]

3. Entery to continue.

The un-installation utility performs various verification functions and displays
confirmation message:

Are you sure you want to UNINSTALL the Provisioning Server [y/n]?

4. Entery to continue.

The utility completes the un-installation:
NavisXtend Provisioning Server User’s Guide 2-30

Un-install complete

Removal of <NAVISeps> was successful.

The un-installation of the Provisioning Server components is complete.

ning

new
I.

e
 the
Writing a Provisioning Application

Writing a Provisioning Application
To write a Provisioning application, perform the following steps:

1. Install the Provisioning Server Application Toolkit, as described in“Installation
Instructions” on page 2-4.

2. Set the environment variables that control SNMP parameters for the Provisio
client. For instructions, refer to“Configuring the Provisioning Client” on page
2-16.

3. Add the following entries to yourmakefile:

-I/opt/ProvServ/include

-L/opt/ProvServ/lib -lClient

The first line is for all compilations; the second line is for the link step.

4. Write the program.

5. Compile the program.

Upgrading an Existing Application

If you have a Provisioning application that was built with a previous version of the
Provision Server Application Toolkit and you want to use the new features of the
Provisioning Server API, you need to make the necessary code changes for the
functions and attributes, and recompile and relink your program with the new AP

If you do not want to use the new features of the Provisioning Server API, no cod
changes are necessary. You need only to recompile and relink your program with
current version of the API include files and libraries.
NavisXtend Provisioning Server User’s Guide 2-31

3

Using the CLI

This chapter describes how to use the Command Line Interface (CLI) to build a
provisioning script instead of a C or C++ program.

To understand the Provisioning Server object hierarchy, first readChapter 1.
NavisXtend Provisioning Server User’s Guide 3-1

d a
line

d

) in

an

 the

)

ase.

. For
d, as
Using the CLI

Using the CLI
The Application Toolkit provides a Command Line Interface (CLI) for users to buil
provisioning script instead of a C or C++ program. The CLI is a set of command-
programs that you can issue from any UNIX shell to provision network objects in
interactive or batch mode.

There is a CLI command for each operational function of the API. Each comman
uses a string representation to specify objects and attributes.

cvadd (Object ID, Attributes) — Creates an object in the database and (optionally
the switch.

cvaddmember (Object ID, Object ID) — Adds a member (usually an address) to
object list.

cvmodify (Object ID, Attributes) — Modifies specific attributes of an object.

cvdelete (Object ID) — Deletes an object from the database and (optionally) from
switch.

cvdeletemember (Object ID, Object ID) — Deletes a member (usually an address
from an object list.

cvget (Object ID, Attributes) — Retrieves specific attribute values from the datab

cvlistcontained (Object ID, type, Attributes) — Retrieves a list of configuration
attributes for objects of the given type contained by the specified parent.

cvlistallcontained (Object ID, Attributes) — Retrieves a list of configuration
attributes for all objects contained by the specified parent.

The commands are supported for most target object types, with a few restrictions
example, you cannot specify a switch when you issue an Add or Delete comman
the Provisioning Server does not support adding or deleting switches.

Thecvhelp command provides usage help for the CLI.
NavisXtend Provisioning Server User’s Guide 3-2

For a list of the object types you can use when you issue the operational functions of
the CLI, refer toTable 1-4 on page 1-38.

There are several environment variables you can use to configure the behavior of the
CLI. For details, refer to“Setting Environment Variables” on page 2-13.

Using the CLI

CLI Usage Overview

Most of the CLI commands use the following syntax:

command object-name {-attribute-name value}

Syntax

command The name of the command. If the command is in your
path, you can enter just the command name, such as
cvadd, cvdelete, cdmodify, cvget, cvaddmember, or
cvdeletemember. Otherwise, you must prefix the
command name with the path/opt/ProvServ/bin/.

To use standard input to specify arguments, issue a
dash (-) after the command name.

object-name The object ID. To specify an object ID, you first
specify the object’s parent (if any), including the
parent type and value. Then, you specify the child type
and value. For rules on specifying object IDs for
various types of objects, refer to“Managed Objects”
on page 1-14.

-attribute-name The attribute ID appropriate to the object ID.Specify
the attribute name preceded by a dash (-). Use the
attribute ID symbols listed in theNavisXtend
Provisioning Server Object Attribute Definitions, but
omit the CVA_ObjectType prefix. For example,
specify location as:-Location .
NavisXtend Provisioning Server User’s Guide 3-3

and
s

. This
en

le
Using the CLI

-attribute-name andvalue are optional parameters. You can specify up to 40
attribute-value pairs.

Before the CLI issues a command to the Provisioning Server, it checks the comm
for correct syntax. The server checks the input parameters for validity and report
errors back to the client.

To maximize CLI efficiency,do not set all possible attributes in a request. Specify
only attributes that are mandatory.

In some cases, a CLI command line may become too long for the shell to handle
can happen most often when adding LPorts. The restriction is most likely to happ
when using thesh or csh shells. It occurs only in certain circumstances when using
ksh. To work around this buffer restriction, separate the CLI command into multip

value The value of the attribute ID. The value requires a
data type appropriate for the argument, such as
integer, string, and so on. For data types, use the
data types listed in theNavisXtend Provisioning
Server Object Attribute Definitions. Note the
following rules for values:

• For integers, specify the integer value.

• For strings, enclose the string in quotes if it
contains special characters, such as a blank
character. String values cannot begin with a
hyphen.

• For enumerated types, specify the text value that
represents the integer value. In most cases, the
CLI uses an abbreviated text value.

• For Object ID, specify the Object ID that identifies
the object in the containment hierarchy (refer to
“Managed Objects” on page 1-14).
NavisXtend Provisioning Server User’s Guide 3-4

lines. At the end of each line, insert the backslash character (\) immediately followed
by the<Return> key. This instructs the shell that the next line is part of the same
command.

for

r to
Using the CLI

For example:

cvadd switch.1.1.1.1.card.9.pport.1.lport.2 \<Return>

-serviceType smds -smdsType SsiDte \<Return>

-bandwidth 64000

The sections that follow present the CLI commands in alphabetical order. Usage
examples are provided with each command. Use these examples as guidelines
syntax and usage. The exact attributes required by a particular command vary,
depending on the type of LPort and Card specified. For additional examples, refe
“CLI Examples” on page 3-29.
NavisXtend Provisioning Server User’s Guide 3-5

 ID,

ct.

can
cess

e

cvadd

cvadd

Purpose

Creates an object in the database and (optionally) in the switch. The attributes
specified by the command are used to initialize the object.

Command Syntax

cvaddobject-name {-attribute-name value } . . .

Parameters

object-name specifies the object to be added. The object is specified by its object
based on the containment hierarchy (for information, refer to“Managed Objects” on
page 1-14).

-attribute-name value specifies an attribute and its value to be added to the obje
The attribute is specified by its argument name. The value uses a data type
appropriate for the argument. You can specify up to 40 attribute-value pairs.

Specify only those attributes and values appropriate for the object type. You
specify any attribute except one with either the Read-Only or Create-Only ac
restriction.

Notes

For a list of object types that you can add with this command, refer toTable 1-4 on
page 1-38.

To create a card or PPort, use the Modify command (cvmodify). The CascadeView
database automatically populates each switch with cards of type “empty”. Use th
NavisXtend Provisioning Server User’s Guide 3-6

Modify command to change the card’s type from “empty” to the specified type.
Likewise, once a card has been configured, CascadeView automatically populates the
card with all necessary Physical Ports. Use the Modify command to change the PPort
specifications. In the case of the channelized DS3 card, once the card has been
configured, CascadeView automatically populates the card with all necessary
channels. Use the Modify command to change the channel specifications.

t the
 are
 valid

to a

ort.

Port.
cvadd

If cvadd is successful, it prints the command name followed by the arguments tha
Provisioning Server returns. You can use this output to verify that the arguments
the same as those specified in the original request. Any attribute that is missing a
value is a required attribute that you omitted.

Examples

The followingcvadd command creates an LPort:

/opt/ProvServ/bin/cvadd — Switch.1.1.1.2.card.4.pport.3.lport.1
-Name lport1 -SmdsType SsiDte -ServiceType Smds -Bandwidth 64000
-ErrorPerMinThreshold 0 -AdminStatus Up -ErrorCheckFlag Off
-HeartBPFlag On -SmdsPduViolTcaFlag Disable -HeartBPInterval 1
-HeartBPNAThresh 1

If successful, the command returns the following text:
/opt/ProvServ/bin/cvadd Switch.1.1.1.2.card.4.pport.3.lport.1
-Name lport1 -SmdsType SsiDte -ServiceType Smds -Bandwidth
64000 -ErrorPerMinThreshold 0 -AdminStatus Up -ErrorCheckFlag
Off -HeartBPFlag On -SmdsPduViolTcaFlag Disable -HeartBPInterval
1 -HeartBPNAThresh 1

The followingcvadd command creates a circuit connecting a Frame Relay LPort
PPPto1490 LPort:

/opt/ProvServ/bin/cvadd —
Switch.1.1.1.1.card.5.pport.5.lport.5.dlci.22 -Endpoint2
Switch.1.1.1.2.card.5.pport.5.lport.5.dlci.23 -GracefulDiscard
Enabled -AdminStatus Up -Priority Low -RerouteBalance Disabled

In this example:

• The first endpoint (Switch.1.1.1.1.card.5.pport.5.lport.5) is a Frame Relay LP

• The second endpoint (Switch.1.1.1.2.card.5.pport.5.lport.5) is a PPPto1490 L
NavisXtend Provisioning Server User’s Guide 3-7

 the

 on

ond

e

t, the
cvaddmember

cvaddmember

Purpose

Adds an address to a screen or netwide group address. Upon completion of the
command, the address represented by the second object parameter is added to
object specified by the first object parameter.

Command Syntax

cvaddmemberobject-name object-name

Parameters

object-name specifies the objects. Each object is specified by its object ID, based
the containment hierarchy (for information, refer to“Managed Objects” on page
1-14). The firstobject-name specifies the screen or netwide group address; the sec
object-name specifies the address to become a member of thescreen or netwide
group address.

Notes

For a list of object types that you can add with this command, refer toTable 1-4 on
page 1-38.

When you specify the object CVT_SmdsGroupScreen as the container object, th
member to be added must be either a CVT_SmdsAlienGroupAddress or a
CVT_SmdsSwitchGroupAddress.

When you specify the object CVT_SmdsIndividualScreen as the container objec
member to be added must be either a CVT_SmdsLocalIndividualAddress or a
NavisXtend Provisioning Server User’s Guide 3-8

CVT_SmdsAlienIndividualAddress.

When you specify the object CVT_SmdsNetwideGroupAddress as the container
object, the member to be added must be a CVT_SmdsLocalIndividualAddress.

 that

an
cvaddmember

If cvaddmember is successful, it prints the command name followed by the
arguments that the Provisioning Server returns. You can use this output to verify
the arguments are the same as those specified in the original request.

Example

The followingcvaddmember command adds an SMDS local individual address to
SMDS netwide group address:

/opt/ProvServ/bin/cvaddmember —
Network.1.1.1.0.NetwideGroupAddress.1234567899
Switch.1.1.1.1.card.3.pport.4.lport.1.LocalIndividualAddress.12345
67890

If successful, the command returns the following text:
/opt/ProvServ/cvaddmember Network.1.1.1.0.NetwideGroup
Address.123456789 9 Switch.1.1.1.1.card.3.pport.4.lport.1.
LocalIndividualAddress.1234567890
NavisXtend Provisioning Server User’s Guide 3-9

,

n

. For
ses.

that
nts
cvdelete

cvdelete

Purpose

Deletes an object from the database and (optionally) from the switch.

Command Syntax

cvdeleteobject-name

Parameters

object-name specifies the object to be deleted. The object is specified by its object ID
based on the containment hierarchy (for information, refer to“Managed Objects” on
page 1-14).

Notes

For a list of object types that you can delete with this command, refer toTable 1-4 on
page 1-38.

You only need to delete an SMDS switch group address if the database shows a
SMDS switch group address that should not exist.

To remove a card, use the Modify command (cvmodify) to change the card’s type to
“empty”.

Some objects cannot be deleted until the objects they contain have been deleted
example, you cannot delete an LPort until you delete all of its circuits and addres

If cvdelete is successful, it prints the command name followed by the arguments
the Provisioning Server returns. You can use this output to verify that the argume
NavisXtend Provisioning Server User’s Guide 3-10

are the same as those specified in the original request.

cvdelete

Example

The followingcvdelete command deletes a circuit:

/opt/ProvServ/bin/cvdelete —
Switch.1.1.1.1.card.4.pport.1.lport.1.Dlci.16

If successful, the command returns the following text:
/opt/ProvServ/bin/cvdelete Switch.1.1.1.1.card.4.pport.1.lport.1.d
lci.16
NavisXtend Provisioning Server User’s Guide 3-11

f the
 from

 on

ond

e

t, the
cvdeletemember

cvdeletemember

Purpose

Deletes an address from a screen or netwide group address. Upon completion o
command, the address represented by the second object parameter is removed
the object specified by the first object parameter.

Command Syntax

cvadeletememberobject-name object-name

Parameters

object-name specifies the objects. Each object is specified by its object ID, based
the containment hierarchy (for information, refer to“Managed Objects” on page
1-14). The firstobject-name specifies the screen or netwide group address; the sec
object-name specifies the address to be removed from thescreen or netwide group
address.

Notes

For a list of object types that you can delete with this command, refer toTable 1-4 on
page 1-38.

When you specify the object CVT_SmdsGroupScreen as the container object, th
member to be removed must be either a CVT_SmdsAlienGroupAddress or a
CVT_SmdsSwitchGroupAddress.

When you specify the object CVT_SmdsIndividualScreen as the container objec
member to be removed must be either a CVT_SmdsLocalIndividualAddress or a
NavisXtend Provisioning Server User’s Guide 3-12

CVT_SmdsAlienIndividualAddress.

When you specify the object CVT_SmdsNetwideGroupAddress as the container
object, the member to be removed must be a CVT_SmdsLocalIndividualAddress.

 that
cvdeletemember

If cvdeletemember is successful, it prints the command name followed by the
arguments that the Provisioning Server returns. You can use this output to verify
the arguments are the same as those specified in the original request.

Example

The followingcvdeletemember command removes an SMDS alien group address
from an SMDS group screen:

/opt/ProvServ/bin/cvdeletemember —
Switch.1.1.1.1.card.3.pport.4.lport.1.GroupScreen
Switch.1.1.1.1.AlienGroupAddress.0009998887

If successful, the command returns the following text:
/opt/ProvServ/cvdeletemember Switch.1.1.1.1.card.3.pport.4.lport.1
 .GroupScreen Switch.1.1.1.1.AlienGroupAddress .0009998887
NavisXtend Provisioning Server User’s Guide 3-13

fer

by
cify

t the
 are
cvget

cvget

Purpose

Retrieves the values of specific attributes from the database.

Command Syntax

cvgetobject-name {-attribute-name } . . .

Parameters

object-name specifies the objectwhose attributes are to be retrieved. The object is
specified by its object ID, based on the containment hierarchy (for information, re
to “Managed Objects” on page 1-14).

-attribute-name specifies an attribute to be retrieved. The attribute is specified
its argument name. Specify only attribute names with no values. You can spe
up to 40 attributes.

Specify only those attributes appropriate for the object type.

Notes

For a list of object types that you can use with this command, refer toTable 1-4 on
page 1-38.

If cvget is successful, it prints the command name followed by the arguments tha
Provisioning Server returns. You can use this output to verify that the arguments
the same as those specified in the original request.
NavisXtend Provisioning Server User’s Guide 3-14

Examples

The followingcvget command retrieves the type and administrative status of a card:

/opt/ProvServ/bin/cvget —

Switch.1.1.1.1.card.4 -DefinedType -AdminStatus

cvget

If successful, the command returns the following text:

/opt/ProvServ/bin/cvget Switch.1.1.1.1.card.4 -DefinedType
1PortAtmDs3Uni

-AdminStatus Up

The followingcvget command retrieves the location of a switch:

/opt/ProvServ/bin/cvget Switch.152.148.50.2 -Location

If successful, the command returns the following text:

/opt/ProvServ/bin/cvget Switch.152.148.50.2

-Location “XYZ Corporation”
NavisXtend Provisioning Server User’s Guide 3-15

t to

the

ed

ject.
cvhelp

cvhelp

Purpose

Provides usage help for the CLI.

Command Syntax

cvhelp { object-type -attribute-name}

Parameters

object-type specifies the object type (such as LPort, circuit, etc.) for which you wan
print supported attributes or enumerated attribute values.

-attribute-name specifies an enumerated attribute for which you want to print
supported enumerated values printed.

Notes

Issuecvhelp without arguments to print a command usage statement for each of
CLI commands.

Issuecvhelp with theobject-type argument to print the attribute IDs and attribute
types (such as INTEGER, STRING, and so on) that are supported for the specifi
object.

Issuecvhelp with theobject-type and-attribute-name arguments to print the
enumerated attribute values that are supported for the specified attribute and ob

Examples
NavisXtend Provisioning Server User’s Guide 3-16

The followingcvhelp command prints a usage statement for each of the CLI
commands:

/opt/ProvServ/bin/cvhelp

ject
cvhelp

The followingcvhelp command prints a list of all attributes supported for cards:

/opt/ProvServ/bin/cvhelp card

The followingcvhelp command prints a list of all enumerated attribute values
supported for the enumerated attribute CVA_LPortSmdsType belonging to the ob
LPort:

/opt/ProvServ/bin/cvhelp lport -smdstype
NavisXtend Provisioning Server User’s Guide 3-17

 of a

the

,

g
ch as

To
ber,
cvlistallcontained

cvlistallcontained

Purpose

Queries the database for a list of objects of any type that are immediate children
specified object.

Command Syntax

cvlistallcontainedobject-name

Parameters

object-name specifies the parent object that represents the immediate parent of
contained objects (such as a PPort that is a parent of multiple LPorts).The object
is specified by its object ID, based on the containment hierarchy (for information
refer to“Managed Objects” on page 1-14).

Notes

You can issue the function on either:

Network level — The function retrieves a list of objects on a network, includin
all subnets. To issue the function on a network level, specify an IP address, su
128.100.0.0.

Subnet level — The function retrieves a list of objects on a particular subnet.
issue the function on a subnet level, specify an IP address with a subnet num
such as 128.100.111.0.

Table 3-1 lists the valid parent and child object types you can specify with this
command.
NavisXtend Provisioning Server User’s Guide 3-18

cvlistallcontained

Table 3-1. Valid Parent and Child Object Types

Parent Object Type Child Object Types

Network Switch
VPN
Customer
SmdsCountryCode
SmdsNetwideGroupAddress
SvcSecScn
SvcCUG
SvcCUGMbrRule
TrafficDesc
NetCac
ServiceName

Customer LPort
Circuit

VPN LPort
Circuit

SvcCUGMbrRule SvcCUGMbr

SvcCUG SvcCUGMbr

Switch Card
SvcNodePrefix
SmdsSwitchGroupAddress
SmdsAddressPrefix
SmdsAlienIndividualAddress
SmdsAlienGroupAddress

Card PPort

PPort LPort
Channel
PFdl (8-port ATM T1 card only)
PerformanceMonitor
NavisXtend Provisioning Server User’s Guide 3-19

Aps (1-port OC-12c/STM-4 card only)

Channel (valid for channelized DS3
card only)

LPort

ild
ject.
cvlistallcontained

If cvlistallcontained is successful, it prints the command name followed by the ch
objects that the Provisioning Server returns. It prints out one line for each child ob
The command does not print any attributes for the listed objects.

Example

LPort Circuit
SvcPrefix
SvcAddress
SvcUserPart
SvcConfig
SmdsLocalIndividualAddress
SmdsIndividualScreen
SmdsGroupScreen
PMPCktRoot
AssignedSvcSecScn
SvcSecScnActParam
Spvc
PMPSpvcRoot

SmdsIndividualScreen SmdsLocalIndividualAddress
SmdsAlienIndividualAddress

SmdsGroupScreen SmdsSwitchGroupAddress
SmdsAlienGroupAddress

SmdsNetwideGroupAddress SmdsSwitchGroupAddress
SmdsLocalIndividualAddress

PMPCktRoot PMPCktLeaf

PMPSpvcRoot PMPSpvcLeaf

ServiceName Circuit

Table 3-1. Valid Parent and Child Object Types (Continued)

Parent Object Type Child Object Types
NavisXtend Provisioning Server User’s Guide 3-20

The followingcvlistallcontained command lists all immediate children of a switch:

cvlistallcontained switch.1.1.1.1

cvlistallcontained

If successful, the command returns the following text:

cvlistallcontained Switch.1.1.1.1.card.1

cvlistallcontained Switch.1.1.1.1.card.2

cvlistallcontained Switch.1.1.1.1.card.3

cvlistallcontained Switch.1.1.1.1.card.4

cvlistallcontained Switch.1.1.1.1.card.5

cvlistallcontained Switch.1.1.1.1.card.6

cvlistallcontained Switch.1.1.1.1.card.7

cvlistallcontained Switch.1.1.1.1.card.8

cvlistallcontained Switch.1.1.1.1.SwitchGroupAddress.8889998889

cvlistallcontained Switch.1.1.1.1.AddressPrefix.123456

cvlistallcontained Switch.1.1.1.1.AddressPrefix.222333

cvlistallcontained Switch.1.1.1.1.AddressPrefix.890890

cvlistallcontained Switch.1.1.1.1.AddressPrefix.999000

cvlistallcontained Switch.1.1.1.1.AlienIndividualAddress.8889998887

cvlistallcontained Switch.1.1.1.1.AlienGroupAddress.0009998887
NavisXtend Provisioning Server User’s Guide 3-21

fer

ts to

 is
 You
cvlistcontained

cvlistcontained

Purpose

Queries the database for a list of objects of a specified type that are children of a
specified object. The children can be positioned anywhere in the containment
hierarchy of the root object.

Command Syntax

cvlistcontainedobject-name object-type {-attribute-name} . . .

Parameters

object-name specifies the parent object. The parent object can be the immediate
parent of the contained objects (such as a PPort that is a parent of multiple
LPorts). Or, the parent object can be positioned higher in the containment
hierarchy (such as a switch that is a parent of multiple LPorts).The object is
specified by its object ID, based on the containment hierarchy (for information, re
to “Managed Objects” on page 1-14).

object-type specifies the enumerated value that specifies the type of the objec
be retrieved.

-attribute-name specifies an attribute to be retrieved for the object. The attribute
specified by its argument name. Specify only attribute names with no values.
can specify up to 40 attributes.

Specify only those attributes appropriate for the object type.

If you want all attributes to be retrieved, omit the-attribute-name argument. The
command returns all readable attributes for the child objects.
NavisXtend Provisioning Server User’s Guide 3-22

s

cvlistcontained

Notes

You can issue the function on either:

Network level — The function retrieves a list of objects on a network, including
all subnets. To issue the function on a network level, specify an IP address, such a
128.100.0.0.

Subnet level — The function retrieves a list of objects on a particular subnet. To
issue the function on a subnet level, specify an IP address with a subnet number,
such as 128.100.111.0.

Table 3-2 lists the valid parent and child object types you can specify with this
command.

Table 3-2. Valid Parent and Child Object Types

Parent Object Type Child Object Types

Network Circuit
Customer
NetCac
PMPCktLeaf
PMPCktRoot
PMPSpvcRoot
SmdsAddressPrefix
SmdsCountryCode
SmdsLocalIndividualAddress
SmdsNetwideGroupAddress
SvcCUG
SvcCUGMbrRule
SvcSecScn
Switch
TrafficDesc
ServiceName
VPN

Customer LPort
NavisXtend Provisioning Server User’s Guide 3-23

Circuit

VPN LPort
Circuit

SvcCUGMbrRule SvcCUGMbr

SvcCUG SvcCUGMbr

cvlistcontained

Switch Aps
Card
Channel
Circuit
LPort
Performance Monitor
PFdl
PMPSpvcRoot
PPort
Spvc
SmdsAddressPrefix
SmdsAlienGroupAddress
SmdsAlienIndividualAddress
SmdsGroupScreen
SmdsIndividualScreen
SmdsLocalIndividualAddress
SmdsSwitchGroupAddress
SvcAddress
SvcConfig
SvcNodePrefix
SvcPrefix
SvcUserPart

Card Aps
Channel
Circuit
LPort
Performance Monitor
PFdl
PMPSpvcRoot
PPort
Spvc
SmdsAlienGroupAddress
SmdsAlienIndividualAddress

Table 3-2. Valid Parent and Child Object Types (Continued)

Parent Object Type Child Object Types
NavisXtend Provisioning Server User’s Guide 3-24

SmdsGroupScreen
SmdsIndividualScreen
SmdsLocalIndividualAddress
SmdsSwitchGroupAddress
SvcConfig
SvcNodePrefix
SvcUserPart

cvlistcontained

PPort Aps
Channel
Circuit
LPort
PerformanceMonitor
PFdl (8-port ATM T1 card only)

Channel (valid for channelized DS3
card only)

LPort

LPort AssignedSvcSecScn
Circuit
PMPCktRoot
PMPSpvcRoot
SmdsGroupScreen
SmdsIndividualScreen
SmdsLocalIndividualAddress
Spvc
SvcAddress
SvcConfig
SvcPrefix
SvcUserPart
SvcSecScnActParam

SmdsIndividualScreen SmdsLocalIndividualAddress
SmdsAlienIndividualAddress

SmdsGroupScreen SmdsSwitchGroupAddress
SmdsAlienGroupAddress

SmdsNetwideGroupAddress SmdsSwitchGroupAddress
SmdsLocalIndividualAddress

PMPCktRoot PMPCktLeaf

PMPSpvcRoot PMPSpvcLeaf

Table 3-2. Valid Parent and Child Object Types (Continued)

Parent Object Type Child Object Types
NavisXtend Provisioning Server User’s Guide 3-25

If cvlistcontained is successful, it prints the command name followed by the child
objects that the Provisioning Server returns. It prints one line for each child object and
includes attributes and values.

cvlistcontained

Example

The followingcvlistcontained command lists all LPorts on a given switch by their
Names:

cvlistcontained switch.1.1.1.2 lport -Name

If successful, the command returns the following text:

cvlistcontained Switch.1.1.1.2.card.4.pport.2.lport.1 -Name lport1

cvlistcontained Switch.1.1.1.2.card.4.pport.1.lport.1 -Name lport2

cvlistcontained Switch.1.1.1.2.card.4.pport.3.lport.1 -Name lport3
NavisXtend Provisioning Server User’s Guide 3-26

itch.

ct

priate

can

e

 has
cvmodify

cvmodify

Purpose

Modifies specific attributes of an object in the database and (optionally) in the sw

Command Syntax

cvmodify object-name {-attribute-name value} . . .

Parameters

object-name specifies the object to be modified. The object is specified by its obje
ID, based on the containment hierarchy (for information, refer to“Managed Objects”
on page 1-14).

-attribute-name value specifies an attribute and its value to be modified. The
attribute is specified by its argument name. The value uses a data type appro
for the argument. You can specify up to 40 attribute-value pairs.

Specify only those attributes and values appropriate for the object type. You
specify any attribute except those with either the Read-Only or Create-Only
access restriction.

Notes

For a list of object types that you can use with this command, refer toTable 1-4 on
page 1-38.

You can use this command to create a card or PPort. The CascadeView databas
automatically populates each switch with cards of type “empty”. Usecvmodify to
change the card’s type from “empty” to the specified type. Likewise, once a card
NavisXtend Provisioning Server User’s Guide 3-27

been configured, CascadeView automatically populates the card with all necessary
Physical Ports. Usecvmodify to change the PPort specifications. In the case of the
channelized DS3 card, once the card has been configured, CascadeView automatically
populates the card with all necessary channels. Usecvmodify to change the channel
specifications.

 that
nts
cvmodify

You can use this command to remove a card. Usecvmodify to change the card’s type
to “empty”.

If cvmodify is successful, it prints the command name followed by the arguments
the Provisioning Server returns. You can use this output to verify that the argume
are the same as those specified in the original request.

Example

The followingcvmodify command creates a card by specifying its type and
administrative status:

/opt/ProvServ/bin/cvmodify Switch.1.1.1.1.card.4 -DefinedType
1PortAtmDs3Uni -AdminStatus Up

If successful, the command returns the following text:

/opt/ProvServ/bin/cvmodify Switch.1.1.1.1.card.4

-DefinedType 1PortAtmDs3Uni

-AdminStatus Up
NavisXtend Provisioning Server User’s Guide 3-28

e

Port
r,
p

s if it

 SVC

*)
CLI Examples

CLI Examples
This section provides usage examples of each of the managed objects. Use thes
examples as guidelines for syntax and usage.

Sample CLI Format

Conventions used in the samples are as follows:

<ip_address> — Represents an IP address, such as 130.2.20.1.

<network_no> — Represents a network number.

<id> — Represents any numeric number representation, such as card number, P
number, LPort number, channel number, DLCI number, VPI number, VCI numbe
PMPSpvcLeaf number, country code number, and so on. There is no relationshi
among the values for these numbers.

<name> — Represents a name string, such as the customer name string, Traffic
Descriptor name string, VPN name string, and so on. Enclose the string in quote
contains special characters, such as a blank character.

<svc_string> — Represents an address string that conforms to the convention for
addresses.

<svccug_string> — Represents an SVC CUG string.

<rule_string> — Represents an SVC CUG member rule string.

{-Attribute value}* — Represents the applicable attribute-value pair. An asterisk (
indicates that you can specify multiple attribute-value pairs.

CVT_APS

There is no identifier for APS.
NavisXtend Provisioning Server User’s Guide 3-29

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> aps

cvget switch.<ip_address>.card.<id>.pport.<id>.aps {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.aps {-Attribute value}*

 a

t
 by

nd

e
ding
CLI Examples

CVT_AssignedSvcSecScn
cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> assignedsvcsecscn

CVT_Card
cvlistcontained switch.<ip_address> card

cvmodify switch.<ip_address>.card.<id> {-Attribute value}*

CVT_Channel
cvget switch.<ip_address>.card.<id>.pport.<id>.channel.<id> {-Attribute value}*

CVT_Circuit

Circuits are always identified by their endpoints. An endpoint can be an LPort or
ServiceName; the object ID representation differs accordingly.

In the case of LPorts, endpoints are represented differently according to differen
service types for the containing LPort. For Frame Relay, an endpoint is identified
DLCI number; for ATM, an endpoint is identified by the VPI, VCI pair. Specify the
first endpoint as the main object identifier in the CLI command. Specify the seco
endpoint as an mandatory attribute to the first endpoint (using “-Endpoint2”).

In the case of ServiceName, the endpoint is identified by the network number, th
name of the ServiceName binding, and the VPI/VCI pair or DLCI number (depen
on endpoint type). As with LPorts, the second endpoint is represented as an
mandatory attribute to the first endpoint using “-Endpoint2.”

ServiceName Endpoints

cvadd network.<network_no>.servicename.<name>.vpi.<id>.vci.<id> {-Attribute value}*
NavisXtend Provisioning Server User’s Guide 3-30

cvadd network.<network_no>.servicename.<name>.dlci.<id> {-Attribute value}*

n

CLI Examples

LPort Endpoints

ATM - ATM circuit:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.vpi.<id>.vci.<id> {-Attribute value}*
switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.vpi.<id>.vci.<id>

ATM - Frame Relay circuit:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.vpi.<id>.vci.<id> {-Attribute value}*
switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.dlci<id>

Frame Relay - Frame Relay circuit:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.dlci.<id> {-Attribute value}*
switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.dlci<id>

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> circuit

CVT_Customer
cvlistcontained network.< ip_address> customer

cvget network.<ip_address>.customer.<name> {-Attribute value}*

CVT_LPort

Normal LPort type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.lport.<id> {-Attribute value}*

cvget switch.<ip_address>.card.<id>.pport.<id>.lport.<id> {-Attribute value}*

ATM Virtual UNI LPort type:

The LPort number is generated automatically from the Start VPI number and the
LPort interface number. Therefore, during creation, you do not need to provide a
NavisXtend Provisioning Server User’s Guide 3-31

LPort number. To retrieve information for the LPort, you must specify its LPort
number. To obtain this number, usecvlistcontained.

cvadd switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.startvpi.<id> {-Attribute value}*

cvget switch.<ip_address>.card.<id>.pport.<id>..startvpi.<id> {-Attribute value}*

CLI Examples

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> lport

ATM Network Interworking for Frame Relay NNI LPort type:

The LPort number is identified by VPI/VCI pair.

cvadd switch.<ip_address>.card.<id>.pport.<id>.vpi.<id>.vci.<id> {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.vpi.<id>.vci.<id> {-Attribute value}*

cvget switch.<ip_address>.card.<id>.pport.<id>.vpi.<id>.vci.<id> {-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> lport

CVT_NetCac

There is no identifier for NetCac.

cvlistcontained network.<ip_address> netcac

cvmodify network.<ip_address>.netcac {-Attribute value}*

CVT_PerformanceMonitor

There is no identifier for PerformanceMonitor.

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> pm

cvget switch.<ip_address>.card.<id>.pport.<id>.pm {-Attribute value}*

cvmodify switch.<ip_address>.card.<id>.pport.<id>.pm {-Attribute value}*

CVT_PFdl

There is no identifier for PFdl.

cvlistcontained switch.<ip_address>.card.<id>.pport.<id> fdl

cvget switch.<ip_address>.card.<id>.pport.<id>.fdl {-Attribute value}*
NavisXtend Provisioning Server User’s Guide 3-32

cvmodify switch.<ip_address>.card.<id>.pport.<id>.fdl {-Attribute value}*

e of
 been
ular

st

ibute
CLI Examples

CVT_PMPCkt

A PMP circuit leaf can be added only when a PMPCktRoot exists. The circuit typ
a leaf must be the same as that of the root. For example, if the PMPCktRoot has
created without specifying the VCI value, all the leaves to be added to that partic
root should not have their VCI value specified.

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpcktleaf.vpi.<id>.vci.<id>
{-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpcktroot.vpi.<id>.vci.<id>
pmpcktleaf

CVT_PMPCktRoot

For VCC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpcktroot.vpi.<id>.vci.<id> {-Attribute
value}*

For VPC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpcktroot.vpi.<id> {-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> pmpcktroot

CVT_PMPSpvcLeaf

A PMPSpvc circuit leaf can be added only when a PMPSpvcRoot exists. You mu
specify the correct instance number when you perform acvadd, cvget, cvmodify, or
cvdelete. To retrieve the correct instance number from the database, use the attr
CVA_PMPSpvcRootNextAvailableLeafNo.

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpspvcleaf.<id> {-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpspvcroot.vpi.<id>.vci.<id>
pmpspvcleaf
NavisXtend Provisioning Server User’s Guide 3-33

CVT_PMPSpvcRoot

For VCC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpspvcroot.vpi.<id>.vci.<id>
{-Attribute value}*

}*
CLI Examples

For VPC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.pmpspvcroot.vpi.<id> {-Attribute value

cvlistcontained switch.<ip_address>.card.<id> pmpspvcroot

CVT_PPort
cvlistcontained switch.<ip_address>.card.<id> pport

cvget switch.<ip_address>.card.<id>.pport.<id> {-Attribute value}*

CVT_ServiceName
cvadd network.<ip_address>.servicename.<name> {-Attribute value}*

cvmodify network.<ip_address>.servicename.<name> {-Attribute value}*

cvlistcontained network.<ip_address> servicename

CVT_SmdsAddressPrefix
cvlistcontained switch.<ip_address> addressprefix

CVT_SmdsAlienGroupAddress
cvlistcontained switch.<ip_address> aliengroupaddress

CVT_SmdsAlienIndividualAddress
cvlistcontained switch.<ip_address> alienindividualaddress

CVT_SmdsCountryCode
cvadd network.<ip_address>.countrycode.<id> {-Attribute value}
NavisXtend Provisioning Server User’s Guide 3-34

CVT_SmdsGroupScreen
cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> groupscreen

}*

to
CLI Examples

CVT_SmdsIndividualScreen
cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> individualscreen

CVT_SmdsLocalIndividualAddress
cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> localindividualaddress

CVT_SmdsNetwideGroupAddress
cvlistcontained network.<ip_address> netwidegroupaddress

CVT_SmdsSwitchGroupAddress
cvlistcontained switch. <ip_address> switchgroupaddress

CVT_Spvc

For VCC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.spvc.vpi.<id>.vci.<id> {-Attribute value

For VPC circuit type:

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.spvc.vpi.<id> {-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id> spvc

CVT_SvcAddress

An SvcAddress is represented by a string that conforms to the convention used
specify SVC addresses. The format of thecvadd, cvmodify, cvget, orcvdelete
command depends on the format of the SVC address.
NavisXtend Provisioning Server User’s Guide 3-35

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>. svcaddress.<svc_string>
{-Attribute value}*

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> svcaddress

d to
CLI Examples

CVT_SvcConfig
cvmodify switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.svcconfig {-Attribute value}*

CVT_SvcCUG

No attributes are needed for addition.

cvadd network.<ip_address>.svccug.<svccug_string>

cvlistcontained network. <ip_address> svccug

CVT_SvcCUGMbr
cvadd network.<ip_address>.svccug.<svccug_string>.svccugmbr.<rule_string> {-Attribute value}*

cvlistcontained network.<ip_address>.svccug.<svccug_string> svccugmbr

CVT_SvcCUGMbrRule
cvadd network.<ip_address>.svccugmbrrule.<rule_string> {-Attribute value}*

cvlistcontained network.<ip_address>.svccugmbrrule

CVT_SvcNodePrefix

An SvcNodePrefix is represented by a string that conforms to the convention use
specify SVC addresses. The format of thecvadd, cvmodify, cvget, orcvdelete
command depends on the format of the SVC address.

cvadd switch.<ip_address>.svcnodeprefix.<svc_string> {-Attribute value}*

cvlistcontained switch.<ip_address> svcnodeprefix
NavisXtend Provisioning Server User’s Guide 3-36

}*

 to
CLI Examples

CVT_SvcPrefix

An SvcPrefix is represented by a string that conforms to the convention used to
specify SVC addresses. The format of thecvadd, cvmodify, cvget, orcvdelete
command depends on the format of the SVC address.

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>.svcprefix.<svc_string> {-Attribute value

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> svcprefix

CVT_SvcSecScn
cvlistcontained network.<ip_address> svcsecscn

CVT_SvcSecScnActParam
cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> svcsecscnactparam

CVT_SvcUserPart

An SvcUserPart is represented by a string that conforms to the convention used
specify SVC addresses. The format of thecvadd, cvget, orcvdelete command
depends on the format of the SVC address.

cvadd switch.<ip_address>.card.<id>.pport.<id>.lport.<id>. svcuserpart.<svc_string>

cvlistcontained switch.<ip_address>.card.<id>.pport.<id>.lport.<id> svcuserpart

CVT_Switch
cvlistcontained network.<ip_address> switch

CVT_TrafficDesc
NavisXtend Provisioning Server User’s Guide 3-37

cvadd network.<ip_address>.trafficdesc.<name> {-Attribute value}*

cvlistcontained network.<ip_address> trafficdesc

CLI Examples

CVT_TrafficShaper
cvlistcontained switch.<ip_address>.card.<id>.pport.<id> ts

cvget switch.<ip_address>.card.<id>.pport.<id>.ts.<id> {-Attribute value}*

CVT_VPN
cvadd network.<ip_address>.vpn.<name>
NavisXtend Provisioning Server User’s Guide 3-38

rver.

 a C
About the Enterprise-specific MIB

4

Using the SNMP MIB

This chapter describes how to use the SNMP MIB to access the Provisioning Se
To understand the Provisioning Server object hierarchy, first read Chapter 1.

About the Enterprise-specific MIB
The enterprise-specific MIB interface provides SNMP access to the Provisioning
Server. Use the Provisioning Server MIB to provision via SNMP instead of using
or C++ program or the CLI.

The Provisioning Server MIB supports SNMPv1 protocol. The following SNMP

The Provisioning Server MIB is different than the Ascend Enterprise MIB.
NavisXtend Provisioning Server User’s Guide 4-1

operations are supported:

• get

• get-next

• set (used for creating, modifying, and deleting)

e

e

About the Enterprise-specific MIB

The Provisioning Server MIB is defined according to Structure of Management
Information version 2 (SMIv2). You can view the MIB with an SMIv2-compliant MIB
browser.

To compile the MIB, use an SMIv2-compliant compiler.

The MIB is defined in the file provserv.mib, which is installed in the directory
/opt/ProvServ/snmp_mibs.

If you install the Provisioning Server on a separate machine from CascadeView, and
you want to use the HP OpenView MIB browser to view the MIB, perform the
following steps:

1. File transfer provserv.mib from the Provisioning Server machine to the directory
opt/CascadeView/snmp_mibs on the CascadeView machine.

2. Load the MIB file from the CascadeView machine.

For a listing of the variables in the Provisioning Server MIB, refer to theNavisXtend
Provisioning Server Enterprise MIB Definitions.

Community Strings

The Provisioning Server implements an SNMP agent as a separate entity within th
server to service MIB interface requests. The community name provides a mechanism
for authentication and access-control at the agent. The Provisioning Server supports
two community names, one for Read-Only operations and another for Read-Writ
operations.

The community strings are defined using the environment variables

The Provisioning Server does not generate or process SNMP traps.
NavisXtend Provisioning Server User’s Guide 4-2

CV_READONLY_COMMUNITY_STRING (default value ‘public’) and
CV_READWRITE_COMMUNITY_STRING (default value ‘ascend’). If the
environment variables are defined in the script start-server.sh, the specified strings
take precedence. If they are not set in the script or if the server shell environment does
not define the variables, the server assumes the default values.

est is
 Error
e.

-Write
rror,

rver

The
on).

r all
ble
in
arse
s.
MIB Structure

If the community name is not valid when you issue an snmp_set request, the requ
rejected and the SNMP agent returns a genError. You can access the Command
Table in the MIB to see if the source of the problem is an invalid community nam
Specify the Read-Only community name when you access the table, as that
community name is used for validation purposes.

When you make an snmp_get request, specify either the Read-Only or the Read
community name. If you use a different community name and you encounter an e
the error is not propagated to the Command Error Table.

For details on setting environment variables to configure how the Provisioning Se
handles MIB requests, refer to“Setting Environment Variables” on page 2-13.

MIB Structure
The Provisioning Server MIB defines objects that a client can configure or read.
MIB is organized into logical groups by object (node, card, LPort, PPort, and so
Each group contains table entries that map to the attributes of the API.

The various groups of the MIB are placed under the Provisioning Server object
identifier (OID):

1.3.6.1.4.1.277.9.1

where the last term in the OID represents the version number of the MIB.

Each group can have one or more tables and/or scalar objects. The tables are
two-dimensional, with each column representing an attribute and each row
representing an object instance on a switch. Because a column contains rows fo
possible object instances, many of which may not actually use that attribute, a ta
can containholes. Holes are non-applicable elements of the matrix. For example,
the PPort table, the column that contains the attribute pportChannelIsInUse is sp
because it contains values only for PPort instances present on channelized card
NavisXtend Provisioning Server User’s Guide 4-3

Row instances in a table are uniquely identified by Index information. The Index
represents the information you need to provide when issuing a command on a
particular object. For example, to configure an LPort, you need to specify the IP
address of the switch that contains the LPort and the ifIndex.

ins
MIB Structure

Segmented In formation in Multiple Tables

LPorts are always identified by specifying the IP address of the switch that conta
the LPort and the LPort’s ifIndex. Because LPorts are complex objects, additional
information (such as LPortId, DLCI number, or VPI/VCI pair) is required to obtain an
ifIndex.

The MIB uses Translation Tables to convert the information required for a specific
LPort type into the ifIndex value. The Translation Table provides a unique key to
access a specific row in the Configuration Table (the table that contains the
configuration attributes of the LPort). Table 4-1 lists the information required to create
each type of LPort and which specific Translation Table to use.

Table 4-1. In formation Required for Creating Specific LPorts

LPort Type
Information

Required Table to Use

ATM Direct Trunk

ATM UNI DCE/DTE

Direct Line Trunk

Encapsulation FRAD

FR NNI

FR UNI DCE/DTE

PPP to1490 Encapsulation

SMDS DXI/SNI DTE/DCE

SMDS OPT Trunk

SMDS SSI DTE

Switch

Card

PPort

LPort Id

lportIdIndexTransTable

lportIdChannelIndexTransTable (for LPorts on
the channelized DS3 card)

FR OPT PVC Trunk Switch

Card

PPort

dlciIndexTransTable

dlciChannelIndexTransTable (for LPorts on
the channelized DS3 card)
NavisXtend Provisioning Server User’s Guide 4-4

DLCI

ou

 type
hich

oth
MIB Structure

Circuits are segmented into several categories of tables, based on technology. Y
access various tables to configure circuit endpoints and configure the
cross-connections between endpoints.Table 4-2 lists the information required to
create each type of circuit endpoint and which specific endpoint table to use. The
of endpoint table to use depends on the type of services offered on the card on w
the endpoint is created. Note that the ServiceName can be used with either or b
endpoints.

Once the endpoints are created, use the CircuitCrossConnectTable.

Virtual UNI DCE/DTE Switch

Card

PPort

VPI start
number

vpiStartIndexTransTable

ATM OPT Cell Trunk Switch

Card

PPort

VPI (1-15)/
VCI 0

vpiVciIndexTransTable

vpiVciChannelIndexTransTable (for LPorts on
the channelized DS3 card)

ATM Network Interworking for
FR NNI

ATM OPT Frame Trunk

Switch

Card

PPort

VPI (0-15)/
VCI (32-255)

vpiVciIndexTransTable

vpiVciChannelIndexTransTable (for LPorts on
the channelized DS3 card)

Table 4-1. Information Required for Creating Specific LPorts (Continued)

LPort Type
Information

Required Table to Use
NavisXtend Provisioning Server User’s Guide 4-5

MIB Structure

Table 4-2. Information Required for Creating Specific Circuits

Circuit Type Card Type
Information

Required Table to Use

FR-FR All cards on B-STDX
9000 and STDX 6000
except:

1-port ATM IWU OC3

1-port ATM-CS/DS3

{switchIdIndex

lportIfIndex

DlciIdIndex}

frCircuitEndpointTable

FR-FR
(with either
endpoint using
ServiceName)

All cards on B-STDX
9000 and STDX 6000
except:

1-port ATM IWU OC3

1-port ATM-CS/DS3

{switchIdIndex

lportIfIndex

DlciIdIndex } (for
non-ServiceName
based endpoint)

{networkIdIndex

networkServiceName
Index

dlciIdIndex} (for
ServiceName based
endpoint)

frCircuitEndpointTable (for
non-ServiceName endpoint)

frCircuitServiceNameEndpoint
Table (for ServiceName based
endpoint)

ATM-ATM All cards on CBX 500
and 1-port ATM IWU
OC3 and 1-port ATM
CS/DS3 card on
B-STDX 9000

{switchIdIndex

lportIfIndex

vpiIndex

vciIndex}

atmCircuitEndpointTable
NavisXtend Provisioning Server User’s Guide 4-6

MIB Structure

ATM-ATM
(with either
endpoint using
ServiceName)

All cards on CBX 500
and 1-port ATM IWU
OC3 and 1-port ATM
CS/DS3 card on
B-STDX 9000

{switchIdIndex

lportIfIndex

vpiIndex

vciIndex} (for
non-ServiceName
based endpoint)

{networkIdIndex

networkServiceName
Index

vpiIndex

vciIndex} (for
ServiceName based
endpoint)

atmCircuitEndpointTable (for
non-ServiceName endpoint)

atmCircuitServiceNameEndpoint
Table for ServiceName based
endpoint)

ATM-ATM One endpoint on any
card that is one of the
following (category A):

All cards on CBX 500

1-port ATM IWU OC3
card and 1- port ATM
CS/DS3 card on the
B-STDX 9000

The other endpoint on
any card that is one of
the following (category
B):

All cards on STDX
6000 and all cards on
B-STDX 9000 except

For category A or
category B without
ServiceNames use:

{switchIdIndex

lportIfIndex

vpiIndex

vciIndex}

For category A or B
with ServiceNames use:

{networkIdIndex

networkServiceName
Index

vpiIndex

For category A without
ServiceName use
atmCircuitEndpointTable.

For category A with ServiceNames
use
atmCircuitServiceNameEndpoint
Table.

For category B without
ServiceName use
interworkingCircuitEndpointTable.

For category B with ServiceNames
use
interworkingCircuitServiceName
EndpointTable.

Table 4-2. Information Required for Creating Specific Circuits (Continued)

Circuit Type Card Type
Information

Required Table to Use
NavisXtend Provisioning Server User’s Guide 4-7

1-port ATM IWU OC3
card and 1-port ATM
CS/DS3 card.

vciIndex}

MIB Structure

ATM-ATM Both endpoints exist on
cards that belong to
category B as explained
above.

For category B without
ServiceNames use:

{switchIdIndex

lportIfIndex

vpiIndex

vciIndex}

For category B with
ServiceNames use:

{networkIdIndex

networkServiceName
Index

vpiIndex

vciIndex}

For category B without
ServiceName use
interworkingCircuitEndpointTable.

For category B with ServiceNames
use
interworkingCircuitServiceName
EndpointTable.

FR-ATM
Interworking

Does not depend on the
card type of the
endpoints.

For the FR endpoint:

{switchIdIndex

lportIfIndex

dlciIdIndex}

For the ATM endpoint:

{switchIdIndex

lportIfIndex

vpiIndex

vciIndex}

For the ATM endpoint use

interworkingCircuitEndpointTable

For the FR endpoint use

frCircuitEndpointTable

Table 4-2. Information Required for Creating Specific Circuits (Continued)

Circuit Type Card Type
Information

Required Table to Use
NavisXtend Provisioning Server User’s Guide 4-8

p.
MIB Structure

By segmenting information into separate tables based on technology or specific
features, the MIB improves performance ofget-next operations because it minimizes
holes in matrices.

Table 4-3 lists the main groups of the MIB and the indexing scheme for each grou

FR-ATM
Interworking
with either
endpoint using
ServiceName

Does not depend on the
card type of the
endpoints.

For the ServiceName
based FR endpoint:

{networkIdIndex

networkServiceName
Index,

dlciIdIndex}

For the ServiceName
based ATMendpoint:

{networkIdIndex

networkServiceName
Index

vpiIndex

vciIndex}

For the FR endpoint use

frCircuitServiceNameEndpoint
Table

For the ATM endpoint use

interworkingCircuitServiceName
EndpointTable

Table 4-2. Information Required for Creating Specific Circuits (Continued)

Circuit Type Card Type
Information

Required Table to Use
NavisXtend Provisioning Server User’s Guide 4-9

MIB Structure

Table 4-3. Groups and Table Indexes of the Provisioning Server MIB

Group Name
Group Value Description Sub-group or Table Table Index

server

psMibRev2.1

Contains operational
information about the
Provisioning Server.
Also contains the
Command Error
Table, which supplies
information about the
errors encountered
during snmp_set
operations.

cmdErrorTable {cmdErrorOrigIpAddr,
cmdErrorRequestId,
cmdErrorPortId}

network

psMibRev2.2

Contains information
about the network or
sub-network.

networkTable

networkCACTable

networkCUGTable

networkCUGMemberRule
Table

networkCUGMemberTable

networkSvcSecurityScreen
Table

networkServiceNameTable

vpnTable

{networkNetId}

{networkIdIndex}

{networkIdIndex,
networkCUGNameIndex}

{networkIdIndex,
networkCUGMemberRule
NameIndex}

{networkIdIndex,
networkCUGNameIndex,
networkCUGMemberRule
NameIndex}

{networkIdIndex,
networkSvcSecurityScreen
NameIndex}

{networkIdIndex,
networkServiceNameIndex}

{networkIdIndex,
vpnName}
NavisXtend Provisioning Server User’s Guide 4-10

trafficDescriptorPoolTable

customerTable

{networkIdIndex,
trafficDescriptorName}

{networkIdIndex,
customerName}

MIB Structure

node

psMibRev2.3

Contains information
pertaining to the
managed switch node.

switchTable

switchAtmBillingTable

{switchIdIndex}

{switchIdIndex}

card

psMibRev2.4

Contains information
pertaining to card
objects on the
managed switch node.

cardTable {switchIdIndex,

slotIdIndex}

pport

psMibRev2.5

Contains information
pertaining to PPort
objects on the card.

pportTable

pportTrafficShaperTable

pportApsTable

ds1pmThresholdTable

ds3pmThresholdTable

sonetpmThresholdTable

pportPFdlTable

{switchIdIndex, slotIdIndex,
pportIdIndex

{switchIdIndex, slotIdIndex,
pportIdIndex,
pportTrafficShaperIndex}

{switchIdIndex, slotIdIndex,
pportIdIndex}

{switchIdIndex, slotIdIndex,
pportIdIndex}

{switchIdIndex, slotIdIndex,
pportIdIndex}

{switchIdIndex, slotIdIndex,
pportIdIndex}

{switchIdIndex, slotIdIndex,
pportIdIndex}

lport

psMibRev2.6

Contains two
categories of tables:
Translation and
Configuration.

lportTranslation

lportConfiguration

Table 4-3. Groups and Table Indexes of the Provisioning Server MIB
 (Continued)

Group Name
Group Value Description Sub-group or Table Table Index
NavisXtend Provisioning Server User’s Guide 4-11

MIB Structure

lportTranslation

lport.1

Contains tables that
translate service-
specific index
information of an
LPort to a more
generic index (like an
ifIndex). Used mostly
during LPort creation.

vpiVciIndexTransTable

lportIdIndexTransTable

vpiVciChannelIndexTrans
Table

lportIdChannelIndexTrans
Table

dlciIndexTransTable

dlciChannelIndexTrans
Table

vpiStartIndexTransTable

{switchIdIndex, slotIdIndex,
pportIdIndex, vpiIndex,
vciIndex}

{switchIdIndex, slotIdIndex,
pportIdIndex, lportIdIndex}

{switchIdIndex, slotIdIndex,
pportIdIndex,
ds1ChannelIdIndex,
vpiIndex, vciIndex}

{switchIdIndex, slotIdIndex,
pportIdIndex,
ds1ChannelIdIndex,
lportIdIndex}

{switchIdIndex, slotIdIndex,
pportIdIndex, dlciIdIndex}

{switchIdIndex, slotIdIndex,
pportIdIndex,
ds1ChannelIdIndex,
dlciIdIndex}

{switchIdIndex, slotIdIndex,
pportIdIndex,
vpiStartIndex}

Table 4-3. Groups and Table Indexes of the Provisioning Server MIB
 (Continued)

Group Name
Group Value Description Sub-group or Table Table Index
NavisXtend Provisioning Server User’s Guide 4-12

MIB Structure

lportConfiguration

lport.2

Contains
configuration
information
pertaining to the
various types of
LPorts created on
PPorts. Tables are
based on service type
(FR, ATM, SMDS,
etc.). Within a service
category, further
breakdown is based on
specific functionality
(For example:
lportAtmFcpTable is
specific to
FlowControlProcessor
related configuration
for an ATM LPort).

lportAdminTable

lportFrTable

lportAtmTable

lportAtmFcpTable

lportAtmNtmTable

lportAtmBillingTable

lportSmdsTable

svcAtmConfigTable

lportSvcSecurityScreen
ActionTable

lportSvcSecurityScreen
Table

{switchIdIndex,
lportIfIndex}

{switchIdIndex,
lportIfIndex}

{switchIdIndex,
lportIfIndex}

{switchIdIndex,
lportIfIndex}

{switchIdIndex,
lportIfIndex}

{switchIdIndex,
lportIfIndex}

{switchIdIndex,
lportIfIndex}

{switchIdIndex,
lportIfIndex}

{switchIdIndex,
lportIfIndex}

{switchIdIndex,
lportIfIndex,
networkSvcSecurityScreen
NameIndex}

circuit

psMibRev2.7

Contains two
categories of tables:
Translation and
Configuration.

circuitTranslation

circuitConfiguration

Table 4-3. Groups and Table Indexes of the Provisioning Server MIB
 (Continued)

Group Name
Group Value Description Sub-group or Table Table Index
NavisXtend Provisioning Server User’s Guide 4-13

MIB Structure

circuitConfiguration

circuit.2

Contains tables used
in the configuration of
circuit endpoints and
the circuit
cross-connections
between the two
endpoints.

interworkingCircuit
EndpointTable

atmCircuitEndpointTable

frCircuitEndpointTable

circuitCrossConnectTable

circuitPmpRootTable

circuitPmpLeafTable

atmCircuitBillingTable

atmCircuitNdcTable

circuitSpvcTable

circuitSpvcPmpRootTable

circuitSpvcPmpLeafTable

{switchIdIndex,
lportIfIndex, vpiIndex,
vciIndex}

{switchIdIndex,
lportIfIndex, vpiIndex,
vciIndex}

{switchIdIndex,
lportIfIndex, dlciIndex}

circuitIndex

{switchIdIndex,
lportIfIndex, vpiIndex,
vciIndex}

{switchIdIndex,
lportIfIndex, vpiIndex,
vciIndex,
circuitLeafSwitchIdIndex,
circuitLeafLportIfIndex,
circuitLeafVpiIndex,
circuitLeafVciIndex}

circuitIndex

circuitIndex

{switchIdIndex,
lportIfIndex, vpiIndex,
vciIndex}

{switchIdIndex,
lportIfIndex, vpiIndex,
vciIndex}

{circuitSpvcPmpLeafIndex,

Table 4-3. Groups and Table Indexes of the Provisioning Server MIB
 (Continued)

Group Name
Group Value Description Sub-group or Table Table Index
NavisXtend Provisioning Server User’s Guide 4-14

interworkingCircuitService
NameEndpointTable

switchIdIndex,
lportIfIndex, vpiIndex,
vciIndex}

{networkIdIndex,
networkServiceNameIndex,
vpiIndex, vciIndex}

MIB Structure

circuitConfiguration

circuit.2

(Continued)

atmCircuitServiceName
EndpointTable

frCircuitServiceName
EndpointTable

{networkIdIndex,
networkServiceNameIndex,
vpiIndex, vciIndex}

{networkIdIndex,
networkServiceNameIndex,
dlciIdIndex}

svc

psMibRev2.9

Contains groups
associated with SVC
address configuration.

svcaddress

svcmgt

svcaddress

svc.1

Contains tables
associated with SVC
addressing at various
levels node, port, etc.

svcNodePrefixTable

svcPortPrefixTable

svcAddrTable

svcAtmDteUserPartTable

{switchIdIndex,
svcNodePrefixIndex}

{switchIdIndex,
lportIfIndex,
svcPortPrefixIndex}

{switchIdIndex,
lportIfIndex,
svcAddrAddressIndex}

{switchIdIndex,
lportIfIndex,
svcAtmDteUserPartIndex}

svcmgmt

svc.2

Contains tables related
to SVC configuration
(but not solely
associated with SVC
addresses).

svcConfigTable {switchIdIndex,
lportIfIndex}

channel

psMibRev2.13

Contains information
related to DS1

ds1ChannelTable {switchIdIndex, slotIdIndex
pportIdIndex

Table 4-3. Groups and Table Indexes of the Provisioning Server MIB
 (Continued)

Group Name
Group Value Description Sub-group or Table Table Index
NavisXtend Provisioning Server User’s Guide 4-15

Channels associated
with DS3 channelized
ports.

ds1ChannelIdIndex}

ibutes

on on
nked
ibute

n

 row
on

e in a
ated,

he
MIB Structure

Row Aliasing

For objects in the MIB that have attributes dispersed in several tables, some attr
are common to multiple tables. In the tables of the LPort and circuit groups, the
following attributes are common attributes:

• RowStatus (refer to“RowStatus Attribute” on page 4-17)

• ModifyType (refer to“ModifyType Attribute” on page 4-18)

• lportIfIndex (for tables in the LPort group only)

• CircuitNumber (for tables in the circuit group only)

The tables containing common attributes are considered linked. Thus, an operati
a common attribute in one linked table affects the common attribute in the other li
tables. For example, for a Frame Relay UNI DCE LPort, when the RowStatus attr
is modified in one table (such as the lportIdIndexTransTable), the value of that
attribute is updated in other linked tables (such as the lportAdminTable and
lportFrTable). For a Frame Relay to Frame Relay circuit, when the RowStatus
attribute is modified in the frCircuitEndpointTable, the value of the attribute is
updated in the linked circuitCrossConnectTable.

This feature, known asrow aliasing, gives the user the flexibility to set an attribute i
only one table rather than set it in all related tables. Using row aliasing, the
Provisioning Server reflects the same value for a common attribute for the same
across linked tables. Row aliasing assures that the status of a row and its comm
attributes are always the same irrespective of the table.

The lportIfIndex attribute is an attribute that is not directly set by the user. It is
generated when the user sets the RowStatus attribute to the createAndWait stat
translation table (such as the lportIdIndexTransTable). Once lportIfIndex is gener
the attribute is updated in the linked LPort tables lportIdIndexTransTable,
lportAdminTable, and lportFrTable.

The user does not directly set the CircuitNumber attribute. It is generated when t
NavisXtend Provisioning Server User’s Guide 4-16

user generates circuit endpoints. Once CircuitNumber is generated, the attribute is
updated in the linked circuit tables frCircuitEndpointTable and
circuitCrossConnectTable.

MIB Structure

Column Access Specifie rs

Access specifiers for a table column are specified as Read-Only, Read-Write, or
Not-Accessible. Because SNMP does not support the category Create-Only, attributes
with this restriction are defined as Read-Write. These attributes are usually mandatory
attributes that you provide when creating an object. Refer to theNavisXtend
Provisioning Server Object Attribute Definitions for attributes that are Create-Only.

For most tables, the index attributes are specified as Not-Accessible. Instead of
accessing these index columns directly, you use the Translation Tables to convert
required information into index attributes.

Additional Table Entries

Most table entries have the attributes RowStatus and ModifyType. These attributes are
used in set operations.

RowStatus Attri bute

The RowStatus attribute specifies the state of the table entry at a given time. Valid
values are as follows:

active (1) — Entry is active, such as when it has been created and definitions have
been made to it.

notInService (2) — Entry is not in service, such as when modifications are being
made to it.

notReady (3) — Entry is under creation.

createAndWait (5) — Entry is being created, and is waiting for definitions to be
made to it. When you set the RowStatus attribute to 5, it gets set to 3.

destroy (6) — Entry has been removed.
NavisXtend Provisioning Server User’s Guide 4-17

You must include the RowStatus attribute when you:

• Create an object

• Modify an object by specifying the attribute modifications in multiple PDUs

• Destroy an object

base is

ct is

 to
quests

y

Using the MIB

ModifyType Attribute

The ModifyType attribute specifies the update method, as follows:

1 sends updates to both the network component and the database. The data
updated only if the network component updates successfully.

4 sends updates to the database only.

5 sends updates to the database only and sets a flag indicating that the obje
out of synchronization in the database.

By default, updates are made to both the component and the database.

You must include the ModifyType attribute when you want an update to be made
the database only. The setting applies only to the current request. Subsequent re
revert to the default setting.

Using the MIB
This section describes how to use the MIB to list, create, and modify a given
component on the network.

Using the SNMP Commands

The Provisioning Server supports the following SNMP commands:

get — Reads a single attribute of a row in a table.

get-next — Walks the MIB (similar to performing a ListContained command in
the API or CLI). The command is based on a lexicographical ordering of the
complete OID for various row instances. Thus, the command walks a table b
reading all row values of the first column before starting the second column.

set — Creates a new object, or modifies or deletes an existing object.
NavisXtend Provisioning Server User’s Guide 4-18

l for

ror,

us
est ID,

ment
s
er to

 a
Using the MIB

Command Error Table

The Command Error Table supplies information about any errors you encounter
during snmp_set operations to create or modify objects. This information is usefu
troubleshooting problems.

Entries in the table contain the following information:

• IP address of the host machine where the MIB client’s request originated.

• The request ID of the request sent to the server.

• UDP port number of the client.

• Error code encountered when the server executed the command.

• Error message string.

• The OID of the attribute (column) that is in error. If several attributes are in er
only the first one is reported.

• The timestamp at which the error occurred.

If several MIB clients use the same host, it can be difficult to distinguish the vario
entries in the table based on IP address. To determine uniqueness, use the requ
UDP port number, or the timestamp of the entry.

The Provisioning Server purges entries in this table based on the value of environ
variable CV_SNMP_CMDERROR_CACHE_TIMEOUT. The default setting of thi
variable is 6000 seconds. For more information on this environment variable, ref
“Controlling MIB Cache” on page 2-21.

MIB Cache and Database Locking

The Provisioning Server implements a MIB cache that stores data in memory for
fixed time period. The server uses the cache to optimize performance ofget-next
NavisXtend Provisioning Server User’s Guide 4-19

requests and to store data to be committed to the database during transactions
involving multiple PDUs. The caching behavior varies depending on which operation
is being performed. For details, refer to“Row Creation”, “Row Modification”, and
“get-next Operations” later in this section.

ing
es,
reated

te, the

n
ust be
nt to

ssful

it

e row.

te.

nd to
Using the MIB

The object locking behavior for MIB objects in the database differs from the lock
behavior of the Provisioning Server API, CLI, or CascadeView. For these interfac
the steps associated with locking are transparent to the user. When an object is c
or modified, its parent object gets locked. The user specifies all the information
needed to create or modify the object in one request. Once the request is comple
parent gets unlocked.

By contrast, in the case of the MIB, the information needed to create or modify a
object may not be available in one PDU. As a result, the locks in the database m
held for a longer time. Thus, the steps associated with locking are not transpare
the user.

Row Creation

When an object is created, a new row is created in the database. During a succe
row creation, you perform the following steps:

1. Initiate the transaction by setting the RowStatus attribute to the createAndWa
state.

The parent object gets locked.

2. Issue one or more snmp_set requests to assign values to other attributes of th

The attribute values are stored in MIB cache.

3. Complete the transaction by setting the RowStatus attribute to the active sta

When no errors are encountered, the changes are committed to the switch a
the database, the row is flushed from MIB cache, and the lock is released.

If the API, CLI, or CascadeView makes modifications to an object in the
database at the same time that the object is present in MIB cache during
a get or get-next request, the MIB values in cache become stale.
NavisXtend Provisioning Server User’s Guide 4-20

If an error is encountered, the row remains in cache and the lock remains in effect.
You can correct the error by modifying the contents of the cache (by returning to step
2). Once you have corrected the error and set the RowStatus to the active state, the row
creation is completed, the row is flushed from MIB cache, and the lock is released.
Note that it can take several iterations before all the errors are corrected.

e
ins
ng

the

 an
her
r.

ve to

e

Using the MIB

If a user initiates but does not complete a transaction to create an object, the
partially-created row remains in MIB cache for the amount of time specified by th
environment variable CV_SNMP_LOCK_TIMEOUT. And, the parent object rema
locked for the time specified by the CV_SNMP_LOCK_TIMEOUT value, preventi
other users from accessing the parent object. Thus, users should make sure to
complete all transactions. Once the CV_SNMP_LOCK_TIMEOUT timer expires,
partially-created row is flushed out of cache and the lock is removed.

For more information on this environment variable, refer to“Controlling Object
Locking” on page 2-21.

Row Modification

When an object is modified, a row is modified in the database. Before modifying
object, perform an snmp_get request on the RowStatus attribute to check if anot
user is currently accessing the entry. If the entry is in use, retry your request late

Row modification can be performed with or without modifying the RowStatus
attribute.

PDU Modification without Modifying RowStatus

Simple modifications do not require you to set the RowStatus to the notInService
state; the RowStatus remains Active through the transaction. When you do not ha
modify the RowStatus attribute, the locking and unlocking of the object becomes
transparent.

If you want to modify only a few attributes, you can issue one PDU containing th
appropriate values for the varbinds. Or, you can issue a PDU multiple times.

To maximize MIB efficiency, you should specify all varbinds in one PDU
whenever possible.
NavisXtend Provisioning Server User’s Guide 4-21

ple
MIB

 other

state.

this

te.

nd to

nce
eation

he
ed
r

Using the MIB

PDU Modification by Modifying RowStatus

With complex modifications involving a number of attributes, you can issue multi
PDUs containing the appropriate values for the varbinds. However, to maximize
efficiency, you should specify all varbinds in one PDU whenever possible.

Because of attribute dependencies, you should first set the RowStatus to the
notInService state before making the modifications.

During a complex modification, you perform the following steps:

1. Issue an snmp_get request on the RowStatus attribute to make sure that no
user is currently accessing the object.

2. Initiate the transaction by setting the RowStatus attribute to the notInService

The object gets locked.

3. Issue one or more snmp_set requests to assign values to other attributes of
row.

The attribute values are stored in MIB cache.

4. Complete the transaction by setting the RowStatus attribute to the active sta

When no errors are encountered, the changes are committed to the switch a
the database, and the lock is released.

If an error is encountered during modification, the lock remains in effect. You can
correct the error by modifying the contents of the cache (by returning to step 3). O
you have corrected the error and set the RowStatus to the active state, the row cr
is completed and the lock is released.

If a user initiates (but does not complete) a transaction to modify an object, the
partially-modified row remains in MIB cache for the amount of time specified by t
environment variable CV_SNMP_LOCK_TIMEOUT. And, the object remains lock
for the time specified by the CV_SNMP_LOCK_TIMEOUT value, preventing othe
users from accessing the object. Thus, users should make sure to complete all
NavisXtend Provisioning Server User’s Guide 4-22

transactions. Once the CV_SNMP_LOCK_TIMEOUT timer expires, the
partially-created row is flushed out of cache and the lock is removed.

e
mn

 uses

 to a
nse

e
ance

 that

ts do
Using the MIB

get-next Operations

You can perform aget-next request starting at any location in the MIB (including th
top of the MIB), at any group of the MIB, any column of a table, or a specific colu
of an instance.

get-next requests are performance-intensive operations. The Provisioning Server
MIB cache to cache objects (rows), thus optimizing performance ofget-next requests.
When the objects are initially loaded into cache from the database, the response
get-next request may be slow. However, once the caching is complete, the respo
becomes significantly faster.

Be aware that usingget-next operations on tables with many entries in the databas
may take some time to retrieve. These operations can significantly affect perform
of the server. Although aget-next operation will not block other requests, it can slow
the response to the other requests.

The Provisioning Server purges entries in MIB cache resulting from aget-next
operation based on the value of environment variable
CV_SNMP_ROWENTRY_TIMEOUT. The default setting of this variable is 900
seconds. For more information on this environment variable, refer to“Controlling
MIB Cache” on page 2-21.

Specifying the Object Identifier

When you want to access a specific variable from a MIB group, you enter an OID
uses the following format:

{Provisioning Server OID}.{Group}.{Sub-group}.{Table}.{Entry}.{Column}.{Index}

Complex objects, such as LPorts and circuits, require a sub-group; simple objec
not.

The Provisioning Server OID is:
NavisXtend Provisioning Server User’s Guide 4-23

1.3.6.1.4.1.277.9.1

where the last term in the OID represents the version number of the MIB.

e

ieve

ated
Using the MIB

Example 1: get Command

To find out what type of card is located in a particular slot of a switch, use the
following steps to determine the OID of the command you want to issue:

1. Determine the group value by locating the Card Group in the beginning of th
MIB document. The following line indicates that the group value is4:

card OBJECT IDENTIFIER ::= { psMibRev2 4 }

Cards are simple objects that do not require a sub-group name.

2. Determine the Table value by locating the Table index,cardTable. The line
::= { card 1 } indicates that the Table value is1:

cardTable OBJECT-TYPE
 SYNTAX SEQUENCE OF CardEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Table representing information about all cards in the network"
 ::= { card 1}

3. Determine the Entry value by locating the Entry index,cardEntry . The line
::= { cardTable 1 } indicates that the Entry value is1:

cardEntry OBJECT-TYPE
 SYNTAX CardEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Entry representing information about one card"
 INDEX { switchIdIndex, slotIdIndex }
 ::= { cardTable 1 }

4. Determine the Column value for the MIB variable you want to access. To retr
a card’s type, you need to access the variablecardDefinedType. The line
::= { cardEntry 1 } indicates that the Column value is1.

5. Determine the Index items by locating them in the cardEntry variable you loc
NavisXtend Provisioning Server User’s Guide 4-24

in step 3. The lineINDEX { switchIdIndex, slotIdIndex } indicates the index
items you need to provide to complete this command.

ard

ple

rpret

e

e

Using the MIB

TheswitchIdIndex represents the IP address of the switch. TheslotIdIndex
represents the slot where the card is located. If the switch that contains the c
has IP address 152.148.10.19 and the card for which you are requesting
information is in slot 8, then the index is 152.148.10.19.8.

6. Enter the following command to retrieve the card type for the card (this exam
uses MIT SNMP Tools command syntax):

snmpget -h <server-machine-name> -p<server-port> -c<community-name>
1.3.6.1.4.1.277.9.1.4.1.1.1.152.148.10.19.8

where {Provisioning Server OID = 1.3.6.1.4.1.277.9.1}.{Group = 4}.
{Table = 1}.{Entry = 1}.{Column = 1}.{Index = 152.148.10.19.8}

The system responds by displaying the command as the full MIB tree index,
1.3.6.1.4.1.277.9.1.4.1.1.1.152.148.10.19.8, and retrieves an integer that
represents the type of the card. Refer to the cardDefinedType variable to inte
this integer.

Example 2: get-next Command

To retrieve the Admin status for all LPorts on a switch, use the following steps to
determine the OID of the command you want to issue:

1. Determine the group value by locating the LPort Group in the beginning of th
MIB document. The following line indicates that the group value is6:

lport OBJECT IDENTIFIER ::= { psMibRev2 6 }

2. Admin status is a configuration attribute. To determine the Sub-group value,
locate the LPortConfiguration table in the beginning of the MIB document. Th
following line indicates that the Sub-group value is2.

lportConfiguration OBJECT IDENTIFIER ::= { lport 2 }

3. Determine the Table value by locating the Table index,lportAdminTable . The
NavisXtend Provisioning Server User’s Guide 4-25

line ::= { lportConfiguration 1 } indicates that the Table value is1:

lportAdminTable OBJECT-TYP E
 SYNTAX SEQUENCE OF LportAdminEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION "List of logical port common attribute entries."
 ::= { lportConfiguration 1 }

ieve

 the
Using the MIB

4. Determine the Entry value by locating the Entry index,lportAdminEntry . The
line ::= { lportAdminTable 1} indicates that the Entry value is1:

lportAdminEntry OBJECT-TYPE
 SYNTAX LportAdminEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Logical Port Configuration Entry"
 INDEX { switchIdIndex, lportIfIndex }
 ::= { lportAdminTable 1 }

5. Determine the Column value for the MIB variable you want to access. To retr
the Admin status, you need to access the variablelportAdminAdminStatus . The
line ::= { lportAdminEntry 19 } indicates that the Column value is19:

lportAdminAdminStatus OBJECT-TYPE
 SYNTAX INTEGER {
 up(1),
 down(2),
 testing(3)
 }
 MAX-ACCESS read-write
 STATUS current
 DESCRIPTION "LPort Administrative Status. This attribute is mandatory

for lport creation"
 ::= { lportAdminEntry 19}

6. Enter the following command to request Admin status of all LPort instances in
table (this example uses MIT SNMP Tools command syntax):

snmpget -h <server-machine-name> -p<server-port> -c<community-name>
1.3.6.1.4.1.277.9.1.6.2.1.1.19

where {Provisioning Server OID = 1.3.6.1.4.1.277.9.1}.{Group = 6}.
{Sub-group = 2}.{Table = 1}.{Entry = 1}.{Column = 19}

Index items are omitted, because the request is for Admin status ofall LPort
instances in the table.
NavisXtend Provisioning Server User’s Guide 4-26

For each LPort instance in the network, the system responds by displaying the
command as the full MIB tree index, 1.3.6.1.4.1.277.9.1.6.2.1.1.19, and retrieves
an integer that represents the Admin status of the LPort. If the value is 1, the
Admin Status of an LPort is up; if the value is 2, the Admin Status is down.

te,
e a
nt

efer

Port

 LPort
g

will
ssue

 with

 LPort

.

Using the MIB

The following examples illustrate how to use the Provisioning Server MIB to crea
modify, and delete objects. Several examples involve ATM objects. You would us
similar approach to manage Frame Relay objects, except that you access differe
tables in the MIB. For example, to manage a Frame Relay LPort, you use the
appropriate LPort Translation Table, the lportAdminTable, and the lportFrTable (r
to Table 4-3 on page 4-10).

Example 3: set Command to Create an ATM LPort

To create an ATM LPort, you use the lportIdIndexTransTable to map between the
card, PPort, and LPort ID and the LPort interface number. You must specify the L
ID and request an interface number for it.

To create an ATM LPort, use the following steps:

1. Issue an snmp_set request to obtain an LPort interface number based on the
ID. Set the lportIdIndexTransRowStatus to the createAndWait state, specifyin
the switchIdIndex 1.1.1.1, slotIdIndex 7, pportIdIndex 8, and lportIdIndex 1.

The SNMP agent processes the request and returns a successful
snmp_setResponse.

2. Issue an snmp_get request to obtain the interface number (lportIfIndex) that
be used to create a new entry in the lportAdminTable and the lportAtmTable. I
the request on the lportIdIndexTransIfIndex, specifying the switchIdIndex,
slotIdIndex, pportIdIndex, and lportIdIndex values.

The SNMP agent processes the request and returns an snmp_getResponse
the lportIfIndex 7.

3. Issue a series of snmp_set requests that assign values to the attributes of the
in both the lportAdminTable and the lportAtmTable.

The SNMP agent processes the requests by storing the values in MIB cache
Then, the agent returns a successful snmp_setResponse.
NavisXtend Provisioning Server User’s Guide 4-27

4. Issue an snmp_set request to commit the new entry. Set the lportAdminRowStatus
to the active state, specifying the switchIdIndex 1.1.1.1 and the lportIfIndex 7.
This command automatically sets the lportIdIndexTransRowStatus to the active
state.

The SNMP agent processes the request by committing the new entry to the switch
and to the CascadeView database.

ent
Using the MIB

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse to the MIB client.

Figure 4-1 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the LPort.

MIB Client SNMP Agent

1

3

snmp_set lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == createAndWait

4

snmp_setResponse lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == createAndWait

snmp_get lportIdIndexTransIfIndex.1.1.1.1.7.8.12

snmp_getResponse lportIdIndexTransIfIndex.1.1.1.1.7.8.1 == 7

snmp_set (setting attributes of lportAdminTable and lportAtmTable)

snmp_setResponse == noError

snmp_set lportAdminRowStatus.1.1.1.1.7 == active

commitsnmp_setResponse lportAdminRowStatus.1.1.1.1.7 == active
NavisXtend Provisioning Server User’s Guide 4-28

Figure 4-1. Creating an ATM L Port

CascadeVi ew
 Database

Ascend Switch

 use,

 in a

on the

will
sue

 with

e

Using the MIB

Example 4: set command to Modify an ATM LPort

You can modify an LPort using either of the following methods:

• Specifying the interface number of the LPort

• Specifying the LPort’s VPI/VCI pair

Before modiying any attribute, perform an snmp_get request on the RowStatus
attribute to check if another user is currently accessing the entry. If the entry is in
retry your request later.

Before modifying the LPort attributes, set the lportIdIndexTransRowStatus to the
notInService state. You can skip this step if you specify the attribute modifications
single PDU.

To modify attributes of an ATM LPort for which you do not know the interface
number, use the following steps:

1. Issue an snmp_set request to set the LPort to the notInService state, based
LPort ID. Set the lportIdIndexTransRowStatus to the notInService state,
specifying the switchIdIndex 1.1.1.1, slotIdIndex 7, pportIdIndex 8, and
lportIdIndex 1.

The SNMP agent processes the request and returns a successful
snmp_setResponse.

2. Issue an snmp_get request to obtain the interface number (lportIfIndex) that
be used to modify the entry in the lportAdminTable and the lportAtmTable. Is
the request on the lportIdIndexTransIfIndex, specifying the switchIdIndex,
slotIdIndex, pportIdIndex, and lportIdIndex values.

The SNMP agent processes the request and returns an snmp_getResponse
the lportIfIndex 7.

3. Issue a series of snmp_set requests that modify values of the attributes of th
LPort in both the lportAdminTable and the lportAtmTable.
NavisXtend Provisioning Server User’s Guide 4-29

The SNMP agent processes the requests by storing the values in MIB cache.
Then, the agent returns a successful snmp_setResponse.

 the

ent
Using the MIB

4. Issue an snmp_set request to commit the modified entry. Set the
lportAdminRowStatus to the active state, specifying the switchIdIndex 1.1.1.1
and the lportIfIndex 7. This command automatically sets the
lportIdIndexTransRowStatus to the active state.

The SNMP agent processes the request by committing the modified entry to
switch and to the CascadeView database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse.

Figure 4-2 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when modifying attributes of the LPort.
NavisXtend Provisioning Server User’s Guide 4-30

Using the MIB

MIB Client SNMP Agent

1

3

snmp_set lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == notInService

4

CascadeView
 Database

snmp_setResponse lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == notInService

snmp_get lportIdIndexTransIfIndex.1.1.1.1.7.8.12

snmp_getResponse lportIdIndexTransIfIndex.1.1.1.1.7.8.1 == 7

snmp_set (setting attributes of lportAdminTable and lportAtmTable)

snmp_setResponse == noError

snmp_set lportAdminRowStatus.1.1.1.1.7 == active

commitsnmp_setResponse lportAdminRowStatus.1.1.1.1.7 == active

Ascend Switch
NavisXtend Provisioning Server User’s Guide 4-31

Figure 4-2. Modifying an ATM LPort

ute to
 your

x
you
re

 the

ent
Using the MIB

Example 5: set Command to Delete an ATM LPort

You can delete an LPort using either of the following methods:

• Specifying the interface number of the LPort

• Specifying the LPort ID

Before deleting an object, perform an snmp_get request on the RowStatus attrib
check if another user is currently accessing the object. If the object is in use, retry
request later.

To delete an ATM LPort for which you do not know the interface number, use the
following step:

1. Issue an snmp_set request to delete an LPort based on the LPort ID. Set the
lportIdIndexTransRowStatus to the destroy state, specifying the switchIdInde
1.1.1.1, slotIdIndex 7, pportIdIndex 8, and lportIdIndex 1. (As an alternative,
could set the lportAdminRowStatus to the destroy state, as these attributes a
linked by aliasing.)

The SNMP agent processes the request by committing the modified entry to
switch and to the CascadeView database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse.

Figure 4-3 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when deleting the LPort.
NavisXtend Provisioning Server User’s Guide 4-32

ing

 the

ent
Using the MIB

Figure 4-3. Deleting an ATM LPort Using its VPI/VCI Pair

To delete an ATM LPort for which you know the interface number, use the follow
step:

1. Issue an snmp_set request to delete an LPort based on the LPort’s interface
number. Set the lportAdminRowStatus to the destroy state, specifying the
switchIdIndex 1.1.1.1 and the lportIfIndex 7.

The SNMP agent processes the request by committing the modified entry to
switch and to the CascadeView database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse.

Figure 4-4 shows the request-response message flow between the MIB client, the

MIB Client SNMP Agent

1 snmp_set lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == destroy

CascadeView
 Database

snmp_setResponse lportIdIndexTransRowStatus.1.1.1.1.7.8.1 == destroy
commit

Ascend Switch
NavisXtend Provisioning Server User’s Guide 4-33

SNMP agent, and the database when deleting the LPort.

their
Using the MIB

Figure 4-4. Deleting an ATM LPort Using its Interface Number

Example 6: set Command to Create an ATM Circuit

To create an ATM circuit, you define the two circuit endpoints using the
atmCircuitEndpointTable and establish their interconnection using the
circuitCrossConnectTable (refer toTable 4-2).

To create an ATM circuit, use the following steps:

1. Issue an snmp_set request to define the two circuit endpoints and establish
interconnection. Set the atmCircuitEndpointRowStatus to the createAndWait
state, specifying both endpoint 1 (switchIdIndex 1.1.1.1, lportIfIndex 10,

MIB Client SNMP Agent

1 snmp_set lportAdminRowStatus.1.1.1.1.7 == destroy

CascadeView
 Database

snmp_setResponse lportAdminRowStatus.1.1.1.1.7 == destroy
commit

Ascend Switch
NavisXtend Provisioning Server User’s Guide 4-34

vpiIdIndex 8, and vciIdIndex 34) and endpoint 2 (switchIdIndex 2.2.2.2,
lportIfIdIndex 4, vpiIdIndex 4, and vciIdIndex 54) in a single PDU.

The SNMP agent processes the request and returns a successful
snmp_setResponse.

 circuit

.

reate

 with

 circuit

.

witch

ent
Using the MIB

2. Issue a series of snmp_set requests that assign values to the attributes of the
endpoints in the atmCircuitEndpointTable.

The SNMP agent processes the requests by storing the values in MIB cache
Then, the agent returns a successful snmp_setResponse.

3. Issue an snmp_get request to obtain the circuit number that will be used to c
a new entry in the circuitCrossConnectTable. Specify the switchIdIndex,
lportIfIndex, vpiIdIndex, and vciIdIndex values for one of the endpoints (the
circuit number is the same for both endpoints).

The SNMP agent processes the request and returns an snmp_getResponse
the atmCircuitEndpointCircuitNumber 10.

4. Issue a series of snmp_set requests that assign values to the attributes of the
interconnection in the circuitCrossConnectTable.

The SNMP agent processes the requests by storing the values in MIB cache
Then, the agent returns a successful snmp_setResponse.

5. Issue an snmp_set request to commit the new entry. Set the
circuitCrossConnectRowStatus to the active state, specifying the
atmCircuitEndpointCircuitNumber 10. This command automatically sets the
atmCircuitEndpointRowStatus of the two endpoints to the active state.

The SNMP agent processes the request by committing the new entry to the s
and to the CascadeView database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse.

Figure 4-5 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the ATM circuit.
NavisXtend Provisioning Server User’s Guide 4-35

Using the MIB

MIB Client SNMP Agent

1

3

snmp_set atmCircuitEndpointRowStatus.1.1.1.1.10.8.34 == createAndWait
 atmCircuitEndpointRowStatus.2.2.2.2.4.4.54 == createAndWait

4

CascadeView
 Database

snmp_get atmCircuitEndpointCircuitNumber.1.1.1.1.10.8.34

2

snmp_getResponse atmCircuitEndpointCircuitNumber.1.1.1.1.10.8.34 == 10

snmp_set (setting attributes of atmCircuitEndpointTable for both endpoints)

snmp_setResponse == noError

commit

5

snmp_setResponse circuitCrossConnectRowStatus.10 == active

Ascend Switch

snmp_set (setting attributes of circuitCrossConnectTable)

snmp_setResponse == noError

snmp_setResponse atmCircuitEndpointRowStatus.1.1.1.1.10.8.34 == createAndWait
 atmCircuitEndpointRowStatus.2.2.2.2.4.4.54 == createAndWait

snmp_set circuitCrossConnectRowStatus.10 == active
NavisXtend Provisioning Server User’s Guide 4-36

Figure 4-5. Creating an ATM Circuit

 on
If the

the
 in a

ircuit

both

 on the
ate,

e

.

Using the MIB

Example 7: set Command to Modify an ATM Circuit

You can modify a circuit using either of the following methods:

• Specifying the circuit number

• Specifying the circuit’s endpoints

Before performing a modification on any attribute, perform an snmp_get request
the RowStatus attribute to check if another user is currently accessing the entry.
entry is in use, retry your request later.

Before modifying the circuit attributes, set the circuitCrossConnectRowStatus to
notInService state. You can skip this step if you specify the attribute modifications
single PDU.

To modify attributes of a circuit, use the following steps:

1. Issue an snmp_get request to obtain the circuit number in the appropriate C
Endpoint Table. Specify the switch IP address, lportIfIndex, vpiIdIndex, and
vciIdIndex values for one of the endpoints (the circuit number is the same for
endpoints).

If you know the circuit number, skip to step 2.

2. Issue an snmp_set request to set the circuit to the notInService state, based
circuit number. Set the circuitCrossConnectRowStatus to the notInService st
specifying the circuit number 10.

The SNMP agent processes the request and returns a successful
snmp_setResponse.

3. Issue a series of snmp_set requests that modify values of the attributes of th
circuit. Modifications are made to the circuitCrossConnectTable and the
atmCircuitEndpointTable.

The SNMP agent processes the requests by storing the values in MIB cache
Then, the agent returns a successful snmp_setResponse.
NavisXtend Provisioning Server User’s Guide 4-37

4. Issue an snmp_set request to commit the modified entry. Set the
circuitCrossConnectRowStatus to the active state, specifying the circuit number
10. This command automatically sets the atmCircuitEndpointRowStatus to the
active state.

 the

ent
Using the MIB

The SNMP agent processes the request by committing the modified entry to
switch and to the CascadeView database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse.

Figure 4-6 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when modifying attributes of the circuit.
NavisXtend Provisioning Server User’s Guide 4-38

Using the MIB

MIB Client SNMP Agent

2

4

snmp_set circuitCrossConnectRowStatus.10 == notInService

CascadeView
 Database

snmp_setResponse circuitCrossConnectRowStatus.10 == notInService

3

snmp_set (setting attributes of atmCircuitEndpointTable and/or
circuitCrossConnectTable)

snmp_setResponse == noError

commit

snmp_setResponse circuitCrossConnectRowStatus.10 == active

Ascend Switch

snmp_set circuitCrossConnectRowStatus.10 == active

1 snmp_get (obtaining the circuit number in the appropriate Circuit Endpoint Table)
NavisXtend Provisioning Server User’s Guide 4-39

Figure 4-6. Modifying an ATM Circuit Using its Circuit Number

ute to
 your

et the
ber

 the

ent
Using the MIB

Example 8: set Command to Delete an ATM Circuit

You can delete a circuit using either of the following methods:

• Specifying the circuit number

• Specifying the circuit’s endpoints

Before deleting an object, perform an snmp_get request on the RowStatus attrib
check if another user is currently accessing the object. If the object is in use, retry
request later.

To delete an ATM circuit for which you know the circuit number, use the following
step:

1. Issue an snmp_set request to delete a circuit based on the circuit number. S
circuitCrossConnectRowStatus to the destroy state, specifying the circuit num
10.

The SNMP agent processes the request by committing the modified entry to
switch and to the CascadeView database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse.

Figure 4-7 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when deleting the circuit.
NavisXtend Provisioning Server User’s Guide 4-40

s to
th of
, 98,
Using the MIB

Figure 4-7. Deleting an ATM Circuit Using its Circuit Number

Example 9: set Command to Create a VPN Indexed by Name

To specify a string value when you create an object, you specify the length of the
string and the ASCII representation of each of the characters in the string.

To create a VPN indexed by name, use the following steps:

1. Issue an snmp_set request to set the VPN name “abc”. Set the vpnRowStatu
the createAndWait state, specifying the networkIdIndex 100.100.0.0, the leng
the name (3 characters), and the ASCII values of each letter in the name (97
and 99, respectively).

The SNMP agent processes the request and returns a successful

MIB Client SNMP Agent

1 snmp_set circuitCrossConnectRowStatus.10 == destroy

CascadeView
 Database

snmp_setResponse circuitCrossConnectRowStatus.10 == destroy

commit

Ascend Switch
NavisXtend Provisioning Server User’s Guide 4-41

snmp_setResponse.

2. Issue a series of snmp_set requests that assign values to the attributes of the VPN
in the vpnTable.

The SNMP agent processes the requests by storing the values in MIB cache.
Then, the agent returns a successful snmp_setResponse.

to the
e,

witch

ent
Using the MIB

3. Issue an snmp_set request to commit the new entry. Set the vpnRowStatus
active state, specifying the networkIdIndex 100.100.0.0, the length of the nam
and the ASCII values of each letter in the name.

The SNMP agent processes the request by committing the new entry to the s
and to the CascadeView database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse to the MIB client.

Figure 4-8 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the VPN.
NavisXtend Provisioning Server User’s Guide 4-42

Using the MIB

Figure 4-8. Creating a VPN Indexed by Name

MIB Client SNMP Agent

1

3

snmp_set vpnRowStatus.100.100.0.0.3.97.98.99 == createAndWait

CascadeView
 Database

snmp_setResponse vpnRowStatus.100.100.0.0.3.97.98.99 == createAndWait

2 snmp_set (setting attributes of vpnTable)

snmp_setResponse == noError

snmp_set vpnRowStatus.100.100.0.0.3.97.98.99 == active

commitsnmp_setResponse vpnRowStatus.100.100.0.0.3.97.98.99 == active

Ascend Switch
NavisXtend Provisioning Server User’s Guide 4-43

single
d set
he

e

.

f

Using the MIB

Example 10: set Command to Create a ServiceName Indexed by
Name

To specify a string value when you create an object, you specify the length of the
string and the ASCII representation of each of the characters in the string.

When you create a ServiceName, the first PDU should contain the
networkServiceNameRowStatus as the first varbind and the
networkServiceNamePrimaryLPort as the second varbind.

To create a ServiceName indexed by the name “abc”, use the following steps:

1. Issue an snmp_set request to define the primary ServiceName binding. In a
PDU, set the networkServiceNameRowStatus to the createAndWait state an
the networkServiceNamePrimaryLPort to the objectId (lportAdminIfIndex) of t
LPort. Specify the networkIdIndex 100.100.0.0, the length of the name (3
characters), and the ASCII values of each letter in the name (97, 98, and 99,
respectively).

The SNMP agent processes the request and returns a successful
snmp_setResponse.

2. Issue a series of snmp_set requests that assign values to the attributes of th
ServiceName in the networkServiceNameTable.

The SNMP agent processes the requests by storing the values in MIB cache
Then, the agent returns a successful snmp_setResponse.

3. Issue an snmp_set request to commit the new entry. Set the
networkServiceNameRowStatus to the active state, specifying the
networkIdIndex 100.100.0.0, the length of the name, and the ASCII values o

Do not set the networkServiceNameBackupLPort attribute in an add
request. Otherwise, an error will be reported when the new entry is
committed to the database.
NavisXtend Provisioning Server User’s Guide 4-44

each letter in the name.

The SNMP agent processes the request by committing the new entry to the switch
and to the CascadeView database.

On receipt of noError messages from the switch and database, the SNMP agent
returns a successful snmp_setResponse to the MIB client.

Using the MIB

Figure 4-9 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when adding the ServiceName binding.

MIB Client SNMP Agent

1

3

snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == createAndWait

CascadeVi ew
 Database

2
snmp_set (setting attributes of networkServiceNameTable)

snmp_setResponse == noError

snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active

commitsnmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active

Ascend Switch

snmp_set networkServiceNamePrimaryLPort.100.100.0.0.3.97.98.99 == lportAdminIfIndex.10

snmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == createAndWait

snmp_setResponse networkServiceNamePrimaryLPort.100.100.0.0.3.97.98.99 == lportAdminIfIndex.10
NavisXtend Provisioning Server User’s Guide 4-45

Figure 4-9. Creating a ServiceName Indexed by Name

 on
If the

tatus

ing

 state.
 the
SCII

e

.

f

witch

ent
Using the MIB

Example 11: set command to Modify a ServiceName Indexed by
Name

Before performing a modification on any attribute, perform an snmp_get request
the RowStatus attribute to check if another user is currently accessing the entry.
entry is in use, retry your request later.

Before modifying the ServiceName attributes, set the networkServiceNameRowS
to the notInService state. You can skip this step if you specify the attribute
modifications in a single PDU.

To modify attributes of a ServiceName indexed by the name “abc”, use the follow
steps:

1. Issue an snmp_set request to set the ServiceName “abc” to the notInService
Set the networkServiceNameRowStatus to the notInService state, specifying
networkIdIndex 100.100.0.0, the length of the name (3 characters), and the A
values of each letter in the name (97, 98, and 99, respectively).

The SNMP agent processes the request and returns a successful
snmp_setResponse.

2. Issue a series of snmp_set requests that assign values to the attributes of th
ServiceName in the networkServiceNameTable.

The SNMP agent processes the requests by storing the values in MIB cache
Then, the agent returns a successful snmp_setResponse.

3. Issue an snmp_set request to commit the new entry. Set the
networkServiceNameRowStatus to the active state, specifying the
networkIdIndex 100.100.0.0, the length of the name, and the ASCII values o
each letter in the name.

The SNMP agent processes the request by committing the new entry to the s
and to the CascadeView database.

On receipt of noError messages from the switch and database, the SNMP ag
NavisXtend Provisioning Server User’s Guide 4-46

returns a successful snmp_setResponse to the MIB client.

Figure 4-10 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when modifying the ServiceName binding.

Using the MIB

MIB Client SNMP Agent

1

3

snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == notInService

CascadeView
 Database

snmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == notInService

2 snmp_set (setting attributes of networkServiceNameTable)

snmp_setResponse == noError

snmp_set networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active

commitsnmp_setResponse networkServiceNameRowStatus.100.100.0.0.3.97.98.99 == active

Ascend Switch
NavisXtend Provisioning Server User’s Guide 4-47

Figure 4-10. Modifying a ServiceName Indexed by Name

 your

. Set

CII

 the

ent
Using the MIB

Example 12: set command to Delete a ServiceName Ind exed by
Name

Before deleting an object, perform an snmp_get request on the RowStatus attribute to
check if another user is currently accessing the object. If the object is in use, retry
request later.

To delete a ServiceName indexed by the name “abc”, use the following steps:

1. Issue an snmp_set request to set the ServiceName “abc” to the destroy state
the networkServiceNameRowStatus to the destroy state, specifying the
networkIdIndex 100.100.0.0, the length of the name (3 characters), and the AS
values of each letter in the name (97, 98, and 99, respectively).

The SNMP agent processes the request by committing the modified entry to
switch and to the CascadeView database.

On receipt of noError messages from the switch and database, the SNMP ag
returns a successful snmp_setResponse.

Figure 4-11 shows the request-response message flow between the MIB client, the
SNMP agent, and the database when deleting the ServiceName.

MIB Client SNMP Agent

1 snmp_set networkServiceNaemRowStatus.100.100.0.0.3.97.98.99 == destroy

commitsnmp_setResponse == noError
NavisXtend Provisioning Server User’s Guide 4-48

Figure 4-11. Deleting a ServiceName Indexed by Name

CascadeVi ew
 Database

Ascend Switch

build
Containment Tables

A

Containment Hierarchy

This appendix lists the containment hierarchy (the parent-child relation) used to
object IDs to name objects in the network.

Containment Tables
Each child object is defined as follows:

Child Type — The object contained by another object positioned higher in the
containment hierarchy.

Cardinality — The number of occurrences of the child object within the switch.
NavisXtend Provisioning Server User’s Guide A-1

Containment Tables

Network

Switch

STDX 3000/6000 Switch

Table A-1. Children of the Network Object

Child Type Cardinality

ATM Traffic Descriptors MANY

Connection Admission Control
(CAC)

ONE

Service Name MANY

Customers MANY

SMDS Country Code MANY

SMDS Netwide Group Address MANY

SVC CUG Member Rule MANY

SVC CUGs MANY

SVC Security Screen MANY

Switch MANY

Virtual Private Networks MANY

Table A-2. Children of the STDX 3000/6000 Switch
NavisXtend Provisioning Server User’s Guide A-2

Child Type Cardinality

6-port V.35 Card MANY

1-port 24-channel T1 Card MANY

1-port 30-channel E1 Card MANY

Containment Tables

B-STDX 8000/9000 Switch

6-port Universal I/O Card MANY

8-port Low Speed UIO Card MANY

18-port Low Speed UIO Card MANY

Table A-3. Children of the B-STDX 8000/9000 Switch

Child Type Cardinality

CP ONE

8-port Universal I/O Card MANY

4-port 24-channel T1 Card MANY

4-port 24-channel PRI T1 Card MANY

4-port 30-channel E1 Card MANY

2-port HSSI Card MANY

10-port DSX-1 Card MANY

1-port ATM UNI DS3 Card MANY

1-port ATM IWU OC3 Card MANY

1-port ATM CS/E3 Card MANY

1-port ATM CS/DS3 Card MANY

Table A-2. Children of the STDX 3000/6000 Switch (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-3

4-port Unchannelized T1 Card MANY

12-port E1 Card MANY

4-port Unchannelized E1 Card MANY

Containment Tables

CBX 500 Switch

4-port 24-channel DSX Card MANY

1-port ATM UNI E3 Card MANY

4-port 32-channel PRI E1 Card MANY

1-port 28-channel DS3 Card MANY

SMDS group address MANY

SMDS address prefix MANY

SMDS alien individual address MANY

SMDS alien group address MANY

SvcNodePrefix MANY

Table A-4. Children of the CBX 500 Switch

Child Type Cardinality

SP20 ONE

SP10 ONE

8-port DS3 Card MANY

8-port E3 Card MANY

4-port OC-3c/STM-1 Card MANY

Table A-3. Children of the B-STDX 8000/9000 Switch (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-4

8-port T1 Card MANY

8-port E1 Card MANY

1-port OC-12c/STM-4 Card MANY

Containment Tables

Card/PPort

6-port V.35 Card/PPort

1-port 24-channel T1 Card/PPort

SvcNodePrefix MANY

Table A-5. Children of the 6-port V.35 Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

FR OPTimum PVC Trunk LPort MANY

Direct Line Trunk LPort MANY

Encapsulation FRAD LPort MANY

PPP-to-1490 Translation LPort MANY

Table A-6. Children of the 1-port 24-channel T1 Card/PPort

Child Type Cardinality

Table A-4. Children of the CBX 500 Switch (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-5

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

Containment Tables

1-port 30-channel E1 Card/PPort

6-port Universal I/O Card/Pport

Direct Line Trunk LPort MANY

Encapsulation FRAD LPort MANY

PPP-to-1490 Translation LPort MANY

Table A-7. Children of the 1-port 30-channel E1 Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

Direct Line Trunk LPort MANY

Encapsulation FRAD LPort MANY

PPP-to-1490 Translation LPort MANY

Table A-8. Children of the 6-port Universal I/O Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

Table A-6. Children of the 1-port 24-channel T1 Card/PPort (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-6

FR UNI DTE LPort MANY

FR NNI LPort MANY

FR OPTimum PVC Trunk LPort MANY

Containment Tables

8-port Low Speed UIO Card/Pport

18-port Low Speed UIO Card/Pport

Direct Line Trunk LPort MANY

Encapsulation FRAD LPort MANY

PPP-to-1490 Translation LPort MANY

Table A-9. Children of the 8-port Low Speed Universal I/O Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

FR OPTimum PVC Trunk LPort MANY

Direct Line Trunk LPort MANY

Encapsulation FRAD LPort MANY

PPP-to-1490 Translation LPort MANY

Table A-10. Children of the 18-port Low Speed Universal I/O Card/PPort

Child Type Cardinality

Table A-8. Children of the 6-port Universal I/O Card/PPort (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-7

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

Containment Tables

8-port Uio Card/Pport

FR OPTimum PVC Trunk LPort MANY

Direct Line Trunk LPort MANY

Encapsulation FRAD LPort MANY

PPP-to-1490 Translation LPort MANY

Table A-11. Children of the 8-port Universal I/O Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

FR OPTimum PVC Trunk LPort MANY

SMDS DXI/SNI DCE LPort MANY

SMDS DXI/SNI DTE LPort MANY

SMDS SSI DTE LPort MANY

SMDS OPTimum Trunk LPort MANY

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

Table A-10. Children of the 18-port Low Speed Universal I/O Card/PPort

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-8

ATM Optimum Frame Trunk LPort MANY

ATM Network Internetworking for
FR NNI LPort

MANY

Others Direct Line Trunk LPort MANY

Containment Tables

4-port 24-channel T1 Card/PPort

Otbers Encapsulation FRAD Lport MANY

Others PPP-to-1490 Translation LPort MANY

Table A-12. Children of the 4-port 24-channel T1 Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

SMDS DXI/SNI DCE LPort MANY

SMDS DXI/SNI DTE LPort MANY

SMDS SSI DTE LPort MANY

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

Others Direct Line Trunk LPort MANY

Otbers Encapsulation FRAD LPort MANY

Others PPP-to-1490 Translation LPort MANY

Table A-11. Children of the 8-port Universal I/O Card/PPort (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-9

Containment Tables

4-port 24-channel PRI T1 Card/PPort

4-port 30-channel E1 Card/PPort

Table A-13. Children of the 4-port 24-channel PRI T1 Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI LPort MANY

FR NNI LPort MANY

SMDS DXI/SNI DCE LPort MANY

SMDS DXI/SNI DTE LPort MANY

SMDS SSI DTE LPort MANY

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

Others Direct Line Trunk LPort MANY

Otbers Encapsulation FRAD LPort MANY

Others ISDN PRI D - Channel LPort MANY

Others PPP-to-1490 Translation LPort MANY

Table A-14. Children of the 4-port 30-channel E1 Card/PPort

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-10

FR UNI DCE LPort MANY

FR UNI LPort MANY

FR NNI LPort MANY

SMDS DXI/SNI DCE LPort MANY

Containment Tables

2-port HSSI Card/PPort

SMDS DXI/SNI DTE LPort MANY

SMDS SSI DTE LPort MANY

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

Others Direct Line Trunk LPort MANY

Otbers Encapsulation FRAD LPort MANY

Others PPP-to-1490 Translation LPort MANY

Table A-15. Children of the 2-port HSSI Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI LPort MANY

FR NNI LPort MANY

FR OPTimum PVC Trunk LPort MANY

SMDS DXI/SNI DCE LPort MANY

SMDS DXI/SNI DTE LPort MANY

SMDS SSI DTE LPort MANY

Table A-14. Children of the 4-port 30-channel E1 Card/PPort (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-11

SMDS OPTimum Trunk LPort MANY

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

Containment Tables

10-port DSX-1 Card/PPort

ATM Optimum Frame Trunk LPort MANY

ATM Network Internetworking for
FR NNI LPort

MANY

Others Direct Line Trunk LPort MANY

Otbers Encapsulation FRAD LPort MANY

Others PPP-to-1490 Translation LPort MANY

Table A-16. Children of the 10-port DSX-1 Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI LPort MANY

FR NNI LPort MANY

FR OPTimum PVC Trunk LPort MANY

SMDS DXI/SNI DCE LPort MANY

SMDS DXI/SNI DTE LPort MANY

SMDS SSI DTE LPort MANY

SMDS OPTimum Trunk LPort MANY

Table A-15. Children of the 2-port HSSI Card/PPort (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-12

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM Optimum Frame Trunk LPort MANY

Containment Tables

1-port ATM UNI DS3 Card/PPort

1-port ATM IWU OC3 Card/PPort

ATM Network Internetworking for
FR NNI LPort

MANY

Others Direct Line Trunk LPort MANY

Otbers Encapsulation FRAD LPort MANY

Others PPP-to-1490 Translation LPort MANY

Table A-17. Children of the 1-port ATM UNI DS3 Card/PPort

Child Type Cardinality

ATM UNI DTE LPort MANY

ATM Direct Trunk LPort MANY

ATM Optimum Cell Trunk LPort MANY

ATM Optimum Frame Trunk LPort MANY

ATM Network Internetworking for
FR NNI LPort

MANY

Table A-18. Children of the 1-port ATM IWU OC3 Card/PPort

Table A-16. Children of the 10-port DSX-1 Card/PPort (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-13

Child Type Cardinality

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM Direct Trunk LPort MANY

Containment Tables

1-port ATM CS/DS3 Card/PPort

1-port ATM CS/E3 Card/PPort

ATM Optimum Cell Trunk LPort MANY

ATM Optimum Frame Trunk LPort MANY

ATM Network Internetworking for
FR NNI LPort

MANY

Table A-19. Children of the 1-port ATM CS/DS3 Card/PPort

Child Type Cardinality

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM Direct Trunk LPort MANY

ATM Optimum Cell Trunk LPort MANY

ATM Optimum Frame Trunk LPort MANY

ATM Network Internetworking for
FR NNI LPort

MANY

Table A-20. Children of the 1-port ATM CS/E3 Card/PPort

Table A-18. Children of the 1-port ATM IWU OC3 Card/PPort (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-14

Child Type Cardinality

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM Direct Trunk LPort MANY

Containment Tables

4-port Unchannelized T1 Card/PPort

ATM Optimum Cell Trunk LPort MANY

ATM Optimum Frame Trunk LPort MANY

ATM Network Internetworking for
FR NNI LPort

MANY

Table A-21. Children of the 4-port Unchannelized T1 Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

FR OPTimum PVC Trunk LPort MANY

SMDS DXI/SNI DCE LPort MANY

SMDS DXI/SNI DTE LPort MANY

SMDS SSI DTE LPort MANY

SMDS OPTimum Trunk LPort MANY

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

Table A-20. Children of the 1-port ATM CS/E3 Card/PPort (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-15

ATM Optimum Frame Trunk LPort MANY

ATM Network Internetworking for
FR NNI LPort

MANY

Others Direct Line Trunk LPort MANY

Containment Tables

12-port E1 Card/PPort

Otbers Encapsulation FRAD LPort MANY

Others PPP-to-1490 Translation LPort MANY

Table A-22. Children of the 12-port E1 Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

FR OPTimum PVC Trunk LPort MANY

SMDS DXI/SNI DCE LPort MANY

SMDS DXI/SNI DTE LPort MANY

SMDS SSI DTE LPort MANY

SMDS OPTimum Trunk LPort MANY

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM Optimum Frame Trunk LPort MANY

ATM Network Internetworking for MANY

Table A-21. Children of the 4-port Unchannelized T1 Card/PPort (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-16

FR NNI LPort

Others Direct Line Trunk LPort MANY

Otbers Encapsulation FRAD LPort MANY

Others PPP-to-1490 Translation LPort MANY

Containment Tables

4-port Unchannelized E1 Card/PPort

Table A-23. Children of the 4-port Unchannelized E1 Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

FR OPTimum PVC Trunk LPort MANY

SMDS DXI/SNI DCE LPort MANY

SMDS DXI/SNI DTE LPort MANY

SMDS SSI DTE LPort MANY

SMDS OPTimum Trunk LPort MANY

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM Optimum Frame Trunk LPort MANY

ATM Network Internetworking for
FR NNI LPort

MANY

Others Direct Line Trunk LPort MANY

Otbers Encapsulation FRAD LPort MANY

Others PPP-to-1490 Translation LPort MANY
NavisXtend Provisioning Server User’s Guide A-17

Containment Tables

4-port 24-channel DSX Card/PPort

1-port ATM UNI E3 Card/PPort

Table A-24. Children of the 4-port 24-channel DSX Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

SMDS DXI/SNI DCE LPort MANY

SMDS DXI/SNI DTE LPort MANY

SMDS SSI DTE LPort MANY

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM Network Internetworking for
FR NNI LPort

MANY

Others Direct Line Trunk LPort MANY

Otbers Encapsulation FRAD LPort MANY

Others PPP-to-1490 Translation LPort MANY

Table A-25. Children of the 1-port ATM UNI E3 Card/PPort

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-18

ATM UNI DTE LPort MANY

ATM Direct Trunk LPort MANY

ATM Optimum Cell Trunk LPort MANY

Containment Tables

4-port 32-channel PRI E1 Card/PPort

ATM Optimum Frame Trunk LPort MANY

ATM Network Internetworking for
FR NNI LPort

MANY

Table A-26. Children of the 4-port 32-channel PRI E1 Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

SMDS DXI/SNI DCE LPort MANY

SMDS DXI/SNI DTE LPort MANY

SMDS SSI DTE LPort MANY

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

Others Direct Line Trunk LPort MANY

Otbers Encapsulation FRAD LPort MANY

Others ISDN PRI D - Channel LPort MANY

Table A-25. Children of the 1-port ATM UNI E3 Card/PPort (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-19

Others PPP-to-1490 Translation LPort MANY

Containment Tables

1-port 28-channel DS3 Card/PPort

Table A-27. Children of the 1-port 28-channel DS3 Card/PPort

Child Type Cardinality

FR UNI DCE LPort MANY

FR UNI DTE LPort MANY

FR NNI LPort MANY

FR OPTimum PVC Trunk LPort MANY

SMDS DXI/SNI DCE Lport MANY

SMDS DXI/SNI DTE Lport MANY

SMDS SSI DTE LPort MANY

SMDS OPTimum Trunk LPort MANY

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM Optimum Frame Trunk LPort MANY

ATM Network Internetworking for
FR NNI LPort

MANY

Others Direct Line Trunk LPort MANY

Otbers Encapsulation FRAD LPort MANY

Others PPP-to-1490 Translation LPort MANY
NavisXtend Provisioning Server User’s Guide A-20

Containment Tables

8-port DS3 Card/PPort

8-port E3 Card/PPort

4-port OC-3c/STM-1 Card/PPort

Table A-28. Children of the 8-port DS3 Card/PPort

Child Type Cardinality

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM NNI LPort MANY

ATM Direct Trunk LPort MANY

ATM Optimum Cell Trunk LPort MANY

Table A-29. Children of the 8-port E3 Card/PPort

Child Type Cardinality

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM NNI LPort MANY

ATM Direct Trunk LPort MANY

ATM Optimum Cell Trunk LPort MANY
NavisXtend Provisioning Server User’s Guide A-21

Table A-30. Children of the 4-port OC-3c/STM-1 Card/PPort

Child Type Cardinality

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

Containment Tables

8-port T1 Card/PPort

8-port E1 Card/PPort

ATM NNI LPort MANY

ATM Direct Trunk LPort MANY

ATM Optimum Cell Trunk LPort MANY

Table A-31. Children of the 8-port T1 Card/PPort

Child Type Cardinality

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM NNI LPort MANY

ATM Direct Trunk LPort MANY

ATM Optimum Cell Trunk LPort MANY

Table A-32. Children of the 8-port E1 Card/PPort

Child Type Cardinality

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

Table A-30. Children of the 4-port OC-3c/STM-1 Card/PPort (Continued)

Child Type Cardinality
NavisXtend Provisioning Server User’s Guide A-22

ATM NNI LPort MANY

ATM Direct Trunk LPort MANY

ATM Optimum Cell Trunk LPort MANY

Containment Tables

1-port OC-12c/STM-4 Card/PPort

Table A-33. Children of the 1-port OC-12c/STM-4 Card/PPort

Child Type Cardinality

ATM UNI DCE LPort MANY

ATM UNI DTE LPort MANY

ATM NNI LPort MANY

ATM Direct Trunk LPort MANY

ATM Optimum Cell Trunk LPort MANY
NavisXtend Provisioning Server User’s Guide A-23

INDEX

Index

A
API usage

recompiling an existing application 2-31
writing a C program 1-47, 2-31
writing a C++ program 1-48, 2-31

Application Toolkit
installation instructions 2-4 to 2-10
installed files 2-10 to 2-13
overview 1-4 to 1-5
post-installation tasks 2-8 to 2-10
recompiling an existing application 2-31
un-installation instructions 2-30
upgrading an existing application 2-31
writing a provisioning application 2-31

Aps
object ID 1-20
operations and limitations 1-22

Argument list
for the CLI 1-40
in C 1-40
in C++ 1-40
methods for specifying variable

arguments 1-8, 1-47
AssignedSvcSecScn

object ID 1-20
operations and limitations 1-23

Asynchronous functions 1-5 to 1-8
NavisXtend Provisioning Ser

Asynchronous Transfer Mode.See ATM
ATM Network Interworking for Frame Relay

NNI object ID 1-21
ATM Transport for FR NNI LPorts object ID

1-20
ATM Virtual UNI LPorts object ID 1-20
Attribute list.See Argument list
Attributes, how represented for the CLI 3-3
Automatic Protection Switching.See Aps

C
C

argument list 1-40
interface for API functions 1-4
writing a program 1-47, 2-31

C++
argument list 1-40
interface for API functions 1-4
writing a program 1-48, 2-31

Cache, used to store MIB data in memory
2-21, 4-19 to 4-23

Card
object ID 1-20
operations and limitations 1-23

Channel
object ID 1-21
operations and limitations 1-23

Circuit
DLCI for Frame Relay circuits 1-21
object ID 1-21
object ID for ATM Network

Interworking for Frame Relay
NNI 1-21
ver User’s Guide Index-1

operations and limitations 1-24
VCI for ATM circuits 1-21
VPI for ATM circuits 1-21

Class B addressing 1-46
CLI

argument list 1-40

INDEX

commands 3-6 to 3-28
controlling SNMP parameters 2-15
defined 1-4, 3-2
enclosing strings in quotes 3-4, 3-29
examples 3-29 to 3-38
identifying the Provisioning Server to the

CLI 2-14
installed files 2-10
specifying abbreviated attribute IDs 3-3
specifying abbreviated enumerated

attribute values 3-4
specifying modification type 2-14
specifying security settings 2-15
stopping and restarting 2-25
testing the CLI 2-10
troubleshooting problems 2-25 to 2-29
usage 3-2 to 3-5
writing a provisioning script 2-31

Client include files 2-10 to 2-13
Client libraries 2-10
Column access specifiers in MIB tables 4-17
Command Error Table 2-21, 2-23, 4-3, 4-19
Command Line Interface.See CLI
Community name, for authentication and

access-control 2-22, 4-2
Configuration variables.See Environment

variables
Containment hierarchy 1-17 to 1-19, A-1 to

A-23
Core file, specifying location 2-18
Customer

object ID 1-20

CvErrors.h header file 2-13
CvObjectId.H header file 2-12
CvObjectType.H header file 2-11
CvParamValues.H header file 2-12
CvSVCAddress.H header file 2-12
CvUSL.H header file 2-12

D
Data link connection identifier.See DLCI
Database locking, for MIB objects 4-20 to

4-23
DLCI, for Frame Relay circuits 1-21

E
Environment variables

configuring the CLI 2-13 to 2-15
configuring the MIB 2-21 to 2-23
configuring the Provisioning client 2-16
configuring the Provisioning Server 2-17

to 2-24
Extended Super Frame.See Pfdl

F
Files installed with Provisioning Server and

Application Toolkit 2-10 to 2-13
FR NNI LPort object ID 1-20
Functions

asynchronous 1-5 to 1-8
naming conventions 1-9
operational functions 1-9, 1-10 to 1-11,

1-47, 1-48
select loop processing functions 1-9,
NavisXtend Provisioning Server User’s Guide Index-2

operations and limitations 1-25
CvArgId.H header file 2-12
CvClient.H header file 2-11
CvDefs.H header file 2-11
CvE164Address.H header file 2-12
CvErrors.H header file 2-13

1-11, 1-47, 1-48
session control functions 1-9, 1-10, 1-47,

1-48
synchronous 1-5 to 1-6
utility functions 1-9, 1-12 to 1-13, 1-47,

1-48

INDEX

H
Header files 2-10 to 2-13

I
Include files for client 2-10 to 2-13
Installation instructions 2-4 to 2-10
Installed files

for CLI 2-10
for MIB 4-2
for Provisioning Server and Application

Toolkit 2-10 to 2-13

L
Libraries for client 2-10
Locked database 1-2, 2-21, 4-20 to 4-23
Logical port.SeeLPort
LPort

object ID 1-20
object ID for ATM Transport for FR NNI

LPorts 1-20
object ID for ATM Virtual UNI LPorts

1-20
operations and limitations 1-25
start VPI for Virtual UNI LPort 1-26

M
MIB

cache 2-21, 4-19 to 4-23
column access specifiers 4-17
Command Error Table 4-3, 4-19
community name 4-2
compiling 4-2

OID for MIB objects 4-3
overview 1-4
row aliasing 4-16
RowStatus attribute 4-17
SNMP commands supported 4-18
specifying an OID 4-23 to 4-48
structure 4-3 to 4-18
various tables of 4-4 to 4-15
viewing 4-2

ModifyType attribute in MIB tables 4-18

N
Naming conventions

for functions 1-9
for object IDs 1-20

NavisXtend Provisioning Server Application
Toolkit. See Application Toolkit.

NavisXtend Provisioning Server.See
Provisioning Server

NetCac
object ID 1-20
operations and limitations 1-26

Network
object ID 1-21
operations and limitations 1-26

O
Object Attributes 1-40
Object ID

Aps 1-20
AssignedSvcSecScn 1-20
ATM Network Interworking for Frame
NavisXtend Provisioning Server User’s Guide Index-3

controlling object locking 2-21, 4-20 to
4-23

examples 4-24 to 4-48
identifying agent port 2-18
installed file 4-2
ModifyType attribute 4-18

Relay NNI 1-21
ATM Transport for FR NNI LPorts 1-20
card 1-20
channel 1-21
circuit 1-21
customer 1-20

INDEX

defined 1-14
for the CLI 1-14
in C 1-14
in C++ 1-14
LPort 1-20
naming conventions 1-20
NetCac 1-20
network 1-21
PerformanceMonitor 1-20
PFdl 1-20
PMPCkt 1-21
PMPCktRoot 1-21
PMPSpvcLeaf 1-20
PMPSpvcRoot 1-21
PPort 1-20
ServiceName 1-20
ServiceName endpoint 1-21
SMDS address prefix 1-22
SMDS alien group address 1-22
SMDS alien individual address 1-22
SMDS country code 1-22
SMDS group screen 1-20
SMDS individual screen 1-20
SMDS local individual address 1-22
SMDS netwide group address 1-22
SMDS switch group address 1-22
Spvc 1-21
SvcAddress 1-22
SvcConfig 1-20
SvcCUG 1-20
SvcCUGMbr 1-20
SvcCUGMbrRule 1-20

TrafficDesc 1-20
TrafficShaper 1-20
VPN 1-20

Object identifier.See Object ID
Object types, supported 1-14 to 1-37
Operational functions 1-9, 1-10 to 1-11

P
PerformanceMonitor

object ID 1-20
operations and limitations 1-27

PFdl
object ID 1-20
operations and limitations

Physical port.See PPort
PMPCkt

object ID 1-21
operations and limitations 1-27

PMPCktRoot
object ID 1-21
operations and limitations 1-27

PMPSpvcLeaf
object ID 1-20
operations and limitations 1-28

PMPSpvcRoot
object ID 1-21
operations and limitations 1-28

Point-to-MultiPoint circuit leaf.See PMPCkt
Point-to-MultiPoint circuit root.See

PMPCkRoot
Point-to-MultiPoint SPVC leaf.See

PMPSpvcLeaf
NavisXtend Provisioning Server User’s Guide Index-4

SvcNodePrefix 1-22
SvcPrefix 1-22
SvcSecScn 1-20
SvcSecScnActParam 1-20
SvcUserPart 1-22
switch 1-22

Point-to-MultiPoint SPVC root.See
PMPSpvcRoot

Post-installation tasks 2-8 to 2-10
PPort

object ID 1-20
operations and limitations 1-28

INDEX

Prerequisites
network 2-3
Provisioning client 2-3
Provisioning Server 2-2 to 2-3

Programming files 2-10 to 2-13
ProvClient.h header file 2-11
Provisioning client

controlling SNMP parameters 2-16
enabling a trace file 2-16

Provisioning script.See CLI
Provisioning Server

controlling context timeout 2-20
controlling SMDS addresses 2-23
controlling SNMP parameters 2-20
enabling trace files 2-19
identifying the MIB agent port 2-18
identifying the Provisioning Server port

2-18
implementing security 2-24
installation instructions 2-4 to 2-10
installed files 2-10 to 2-13
MIB overview 1-4
OID for MIB objects 4-3
overview 1-1 to 1-4
post-installation tasks 2-8 to 2-10
SNMP agent 4-2
specifying community strings 2-22, 4-2
specifying core file location 2-18
stopping and restarting 2-24
testing the server 2-8
troubleshooting problems 2-25 to 2-29
un-installation instructions 2-30

S
Sample code 2-11
Security settings

CLI 2-15
Provisioning Server 2-24

Select loop processing functions 1-9, 1-11
Server port, identifying 2-18
ServiceName

object ID 1-20
operations and limitations 1-28

ServiceName endpoint, object ID 1-21
Session control functions 1-9, 1-10
SMDS address prefix

object ID 1-22
operations and limitations 1-29

SMDS alien group address
object ID 1-22
operations and limitations 1-29

SMDS alien individual address
object ID 1-22
operations and limitations 1-29

SMDS country code
object ID 1-22
operations and limitations 1-30

SMDS group screen
object ID 1-20
operations and limitations 1-30

SMDS individual screen
object ID 1-20
operations and limitations 1-30

SMDS local individual address
object ID 1-22
NavisXtend Provisioning Server User’s Guide Index-5

R
Row aliasing in MIB tables 4-16
RowStatus attribute in MIB tables 4-17

operations and limitations 1-31
SMDS netwide group address

object ID 1-22
operations and limitations 1-31

SMDS SSI individual address, operations and
limitations 1-31

INDEX

SMDS switch group address
object ID 1-22
operations and limitations 1-31

SNMP agent 4-2
SNMP commands supported by the

Provisioning Server 4-18
SNMP parameters

CLI 2-15
Provisioning client 2-16
Provisioning Server 2-20

Spvc
object ID 1-21
operations and limitations 1-32

Start VPI for Virtual UNI LPort 1-26
Stopping and restarting

CLI 2-25
Provisioning Server 2-24

SVC addressing 1-42 to 1-46
SVC closed user group member rule.See

SvcCUGMbrRule
SVC closed user group member.See

SvcCUGMbr
SVC closed user group.See SvcCUG
SVC security screen action param.See

SvcSecScnActParam
SVC security screen.See SvcSecScn
SvcAddress

object ID 1-22
operations and limitations 1-32

SvcConfig
object ID 1-20
operations and limitations 1-33

SvcCUGMbrRule
object ID 1-20
operations and limitations 1-34

SvcNodePrefix
object ID 1-22
operations and limitations 1-34

SvcPrefix
object ID 1-22
operations and limitations 1-34

SvcSecScn
object ID 1-20
operations and limitations 1-36

SvcSecScnActParam
object ID 1-20
operations and limitations 1-36

SvcUserPart
object ID 1-22
operations and limitations 1-36

Switch
object ID 1-22
operations and limitations 1-36

Synchronous functions 1-5 to 1-6

T
Testing

CLI 2-10
Provisioning Server 2-8

Trace file
enabling client trace file 2-16
enabling server trace files 2-19

TrafficDesc
object ID 1-20
NavisXtend Provisioning Server User’s Guide Index-6

SvcCUG
object ID 1-20
operations and limitations 1-33

SvcCUGMbr
object ID 1-20
operations and limitations 1-34

operations and limitations 1-36
TrafficShaper

object ID 1-20
operations and limitations 1-37

Troubleshooting problems 2-25 to 2-29

INDEX

U
Un-installation instructions 2-30
Utility functions 1-9, 1-12 to 1-13

V
Variable argument list 1-8, 1-47
VCI for ATM circuits 1-21
Virtual Channel Identifier.See VCI
Virtual Path Identifier.See VPI
VPI (start) for Virtual UNI LPort 1-26
VPI for ATM circuits 1-21
VPN

object ID 1-20
operations and limitations 1-37

W
Writing a provisioning script using CLI 2-31
Writing programs

basic steps in C 1-47, 2-31
basic steps in C++ 1-48, 2-31
recompiling existing application 2-31
upgrading an existing application 2-31
NavisXtend Provisioning Server User’s Guide Index-7

	LIBRARY
	Table of Contents
	About This Guide
	What You Need to Know
	Documentation Reading Path
	How to Use This Guide
	What’s New in This Guide
	Related Documents
	Conventions
	Terminology

	Overview
	NavisXtend Provisioning Server
	Application Toolkit
	Synchronous and Asynchronous Functions
	Functions That Take an Argument List
	Function Names

	Toolkit Functionality
	Session Control Functions
	Operational Functions
	Select Loop Processing Functions
	Utility Functions

	Managed Objects
	Object Types
	Containment Hierarchy
	Naming Conventions for Objects
	Descriptions of Object Types
	CVT_Aps
	CVT_AssignedSvcSecScn
	CVT_Card
	CVT_Channel
	CVT_Circuit
	CVT_Customer
	CVT_LPort
	CVT_NetCac
	CVT_Network
	CVT_PerformanceMonitor
	CVT_PFdl
	CVT_PMPCkt
	CVT_PMPCktRoot
	CVT_PMPSpvcLeaf
	CVT_PMPSpvcRoot
	CVT_PPort
	CVT_ServiceName
	CVT_SmdsAddressPrefix
	CVT_SmdsAlienGroupAddress
	CVT_SmdsAlienIndividualAddress
	CVT_SmdsCountryCode
	CVT_SmdsGroupScreen
	CVT_SmdsIndividualScreen
	CVT_SmdsLocalIndividualAddress
	CVT_SmdsNetwideGroupAddress
	CVT_SmdsSSIIndividualAddress
	CVT_SmdsSwitchGroupAddress
	CVT_Spvc
	CVT_SvcAddress
	CVT_SvcConfig
	CVT_SvcCUG
	CVT_SvcCUGMbr
	CVT_SvcCUGMbrRule
	CVT_SvcNodePrefix
	CVT_SvcPrefix
	CVT_SvcSecScn
	CVT_SvcSecScnActParam
	CVT_SvcUserPart
	CVT_Switch
	CVT_TrafficDesc
	CVT_TrafficShaper
	CVT_VPN

	Valid Object Types for Operational Functions
	Object Attributes
	Bit Mask
	SVC Addressing
	String Conversion
	E.164native
	AESA Addresses
	Example 1
	Example 2
	Example 3
	Example 4

	DefaultRoute
	UserPart

	Class B Addressing
	General API Usage
	C Program
	C++ Program

	Installation and Administration
	Prerequisites
	Provisioning Server Requirements
	Provisioning Client Requirements
	Network Requirements

	Installation Instructions
	Installing the Provisioning Software in a Single-S...
	Installing the Provisioning Software in a Two-Syst...
	Post-Installation Tasks
	Testing the Server
	Setting Environment Variables
	Testing the CLI
	Recompiling an Existing Provisioning Client

	Installed Files
	Programming Files

	Setting Environment Variables
	Configuring the CLI
	Identifying the Provisioning Server to the CLI
	Specifying Modification Type
	Specifying Security Settings
	Controlling SNMP Parameters

	Configuring the Provisioning Client
	Enabling a Client Trace File
	Controlling SNMP Parameters

	Configuring the Provisioning Server
	Identifying the Provisioning Server Port
	Identifying the MIB Agent Port
	Specifying the Core File Location
	Enabling Server Trace Files
	Controlling SNMP Parameters
	Controlling Context Timeout
	Controlling MIB Cache
	Controlling Object Locking
	Specifying Community Strings
	Controlling SMDS Addresses
	Implementing the Security Feature

	Stopping and Restarting the Provisioning Server
	Stopping and Restarting the CLI
	Troubleshooting Problems
	Problem: Requests Frequently Time Out
	Symptoms
	Possible Causes and Solutions

	Problem: Object Is Locked by Others
	Symptoms
	Possible Causes and Solutions

	Technical Support
	Information Checklist

	Un-installation Instuctions

	Writing a Provisioning Application
	Upgrading an Existing Application

	Using the CLI
	Using the CLI
	CLI Usage Overview
	Syntax

	cvadd
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvaddmember
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvdelete
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvdeletemember
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvget
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvhelp
	Purpose
	Command Syntax
	Parameters
	Notes
	Examples

	cvlistallcontained
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvlistcontained
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	cvmodify
	Purpose
	Command Syntax
	Parameters
	Notes
	Example

	CLI Examples
	Sample CLI Format
	CVT_APS
	CVT_AssignedSvcSecScn
	CVT_Card
	CVT_Channel
	CVT_Circuit
	ServiceName Endpoints
	LPort Endpoints

	CVT_Customer
	CVT_LPort
	CVT_NetCac
	CVT_PerformanceMonitor
	CVT_PFdl
	CVT_PMPCkt
	CVT_PMPCktRoot
	CVT_PMPSpvcLeaf
	CVT_PMPSpvcRoot
	CVT_PPort
	CVT_ServiceName
	CVT_SmdsAddressPrefix
	CVT_SmdsAlienGroupAddress
	CVT_SmdsAlienIndividualAddress
	CVT_SmdsCountryCode
	CVT_SmdsGroupScreen
	CVT_SmdsIndividualScreen
	CVT_SmdsLocalIndividualAddress
	CVT_SmdsNetwideGroupAddress
	CVT_SmdsSwitchGroupAddress
	CVT_Spvc
	CVT_SvcAddress
	CVT_SvcConfig
	CVT_SvcCUG
	CVT_SvcCUGMbr
	CVT_SvcCUGMbrRule
	CVT_SvcNodePrefix
	CVT_SvcPrefix
	CVT_SvcSecScn
	CVT_SvcSecScnActParam
	CVT_SvcUserPart
	CVT_Switch
	CVT_TrafficDesc
	CVT_TrafficShaper
	CVT_VPN

	Using the SNMP MIB
	About the Enterprise-specific MIB
	Community Strings

	MIB Structure
	Segmented Information in Multiple Tables
	Row Aliasing
	Column Access Specifiers
	Additional Table Entries
	RowStatus Attribute
	ModifyType Attribute

	Using the MIB
	Using the SNMP Commands
	Command Error Table
	MIB Cache and Database Locking
	Row Creation
	Row Modification
	get-next Operations

	Specifying the Object Identifier
	Example 1: get Command
	Example 2: get-next Command
	Example 3: set Command to Create an ATM LPort
	Example 4: set command to Modify an ATM LPort
	Example 5: set Command to Delete an ATM LPort
	Example 6: set Command to Create an ATM Circuit
	Example 7: set Command to Modify an ATM Circuit
	Example 8: set Command to Delete an ATM Circuit
	Example 9: set Command to Create a VPN Indexed by ...
	Example 10: set Command to Create a ServiceName In...
	Example 11: set command to Modify a ServiceName In...
	Example 12: set command to Delete a ServiceName In...

	Containment Hierarchy
	Containment Tables
	Network
	Switch
	STDX 3000/6000 Switch
	B-STDX 8000/9000 Switch
	CBX 500 Switch

	Card/PPort
	6-port V.35 Card/PPort
	1-port 24-channel T1 Card/PPort
	1-port 30-channel E1 Card/PPort
	6-port Universal I/O Card/Pport
	8-port Low Speed UIO Card/Pport
	18-port Low Speed UIO Card/Pport
	8-port Uio Card/Pport
	4-port 24-channel T1 Card/PPort
	4-port 24-channel PRI T1 Card/PPort
	4-port 30-channel E1 Card/PPort
	2-port HSSI Card/PPort
	10-port DSX-1 Card/PPort
	1-port ATM UNI DS3 Card/PPort
	1-port ATM IWU OC3 Card/PPort
	1-port ATM CS/DS3 Card/PPort
	1-port ATM CS/E3 Card/PPort
	4-port Unchannelized T1 Card/PPort
	12-port E1 Card/PPort
	4-port Unchannelized E1 Card/PPort
	4-port 24-channel DSX Card/PPort
	1-port ATM UNI E3 Card/PPort
	4-port 32-channel PRI E1 Card/PPort
	1-port 28-channel DS3 Card/PPort
	8-port DS3 Card/PPort
	8-port E3 Card/PPort
	4-port OC-3c/STM-1 Card/PPort
	8-port T1 Card/PPort
	8-port E1 Card/PPort
	1-port OC-12c/STM-4 Card/PPort

	Index

